Skip to main content
Log in

Thermodynamics of yeast cell osmoregulation: Passive mechanisms

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The response of yeast cells to osmotic pressure variations of the medium were studied through the kinetics of cell-volume modifications corresponding to the mass transfer of water and solutes. Osmotic variations were made by modification of the concentration of an external binary solution (polyol/water) without nutritive components. Two phases were distinguished in the thermodynamic response. A transient phase following an osmotic shift, which is characterised by rapid water transfer across the cell membrane and whose kinetics determine cell viability; then, a steady-state phase is reached when the cell volume becomes quasi-constant. The response of the cell during the transient phase depends on the level of the osmotic stress, and hence of the osmotic pressure of the medium. In the range of weak osmotic pressures, the metabolism of the cell is preserved through the maintenance of the intracellular turgor pressure. On the other hand in the range of high osmotic pressures of the medium, yeast cells behave as osmometers and no further metabolism occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ArnoldW. N. and LacyJ. S.: Permeability of the cell envelope and osmotic behavior inSaccharomyces cerevisiae, J. Bacteriol. 137 (1977), 564–571.

    Google Scholar 

  2. BernerJ.-L. and GervaisP.: A new visualization chamber to study the transient volumetric response of yeast cells submitted to osmotic shifts,Biotechnol. Bioeng. 43 (1994), 165–170.

    Google Scholar 

  3. BrownA. D.:Microbial Water Stress Physiology, Principles and Perspectives, Wiley, Chichester, England, 1990.

    Google Scholar 

  4. Dick, D. A. T.:Cell Water, Molecular Biology and Medicine Series, Bittar, Oxford University Press, 1966.

  5. EdgleyM. and BrownA. D.: Response of xerotolerant and non-tolerant yeasts to water stress,J. Gen. Microbiol. 104 (1978), 343–345.

    Google Scholar 

  6. GelinasP., ToupinC. J. and GouletJ.: Cell water permeability and cryotolerance ofSaccharomyces cerevisiae, Lett. Appl. Microbiol.,12 (1991), 236–240.

    Google Scholar 

  7. GervaisP., MarechalP.-A., and MolinP.: Effects of the kinetics of osmotic pressure variation on yeast viability,Biotechnol. Bioeng. 40 (1992), 1435–1439.

    Google Scholar 

  8. GriffinD. M.: Water and microbial stress,Adv. Microb. Ecol. 5 (1981), 91–136.

    Google Scholar 

  9. KedemO. and KatchalskyA.: Thermodynamic analysis of the permeability of biological membranes to non-electrolytes,Biochim. Biophys. Acta,27 (1958), 229–246.

    Google Scholar 

  10. LevinR. L.: Water permeability of yeast cells at sub-zero temperatures,J. Membrane Biol. 46 (1979), 91–124.

    Google Scholar 

  11. Marechal, P. A.:Étude de la réponse cellulaire des levures soumises à des variations contrôlées du potentiel hydrique, Ph.D. Thesis, Université de Bourgogne, France, 1992.

  12. MarechalP. A. and GervaisP.: Yeast viability related to the water potential variation: influence of the transient phase,Appl. Microbiol. Biotechnol. 42 (1994), 617–622.

    Google Scholar 

  13. MauroA.: Nature of solvent transfer in osmosis,Science,26 (1957), 252–253.

    Google Scholar 

  14. MeikleA. J., ReedR. H., and GaddG. M.: Osmotic adjustment and the accumulation of organic solutes in whole cells and protoplasts ofSaccharomyces cerevisiae, J. Gen. Microbiol. 134 (1988), 3049–3060.

    Google Scholar 

  15. MorrisG. J., WintersL., CoulsonG. E., and ClarkeK. J.: Effect of osmotic stress on the ultrastructure and viability of the yeastSaccharomyces cerevisiae, J. Gen. Microbiol. 129 (1983), 2023–2034.

    Google Scholar 

  16. MunnsR., GreenwayH., SetterT. L., and KuoJ.: Turgor pressure, volumetric elastic modulus, osmotic volume and ultrastructure ofChlorella emersonii grown at high and low external NaCl,J. Exp. Bot. 34 (1983), 144–145.

    Google Scholar 

  17. NiedermeyerW., ParishG. R., and MoorH.: Reactions of yeast cells to glycerol treatment,Protoplasma 92 (1977), 177–193.

    Google Scholar 

  18. NobelP. S.: The Boyle-Van't Hoff relation,J. Theor. Biol. 23 (1969), 375–379.

    Google Scholar 

  19. ReedR. H.: Transient breakdown in the selective permeability of the plasma membrane ofChlorella emersonii in response to hyperosmotic shock: Implication for cell water relations and osmotic adjustment,J. Membrane Biol. 82 (1984), 83–88.

    Google Scholar 

  20. SchwartzG. J. and DillerK. R.: Osmotic response of individual during freezing,Cryobiology 20 (1983), 61–77.

    Google Scholar 

  21. Steponkus, P.: Membrane destabilization resulting from freeze-induced dehydration, inCryo 87: 24th Annual Meeting, Society for Cryobiology, Edmonton, Canada, 1987.

  22. ToupinC. J., MarcotteM., and LeMaguerM.: Osmotically-induced mass transfer in plant storage tissues: a mathematical model, Part 1,J. Food Eng. 10 (1989), 13–38.

    Google Scholar 

  23. ZimmermannU.: Physics of turgor and osmoregulation,Annu. Rev. Plant Phys. 29 (1978), 121–148.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gervais, P., Molin, P., Marechal, P.A. et al. Thermodynamics of yeast cell osmoregulation: Passive mechanisms. J Biol Phys 22, 73–86 (1996). https://doi.org/10.1007/BF00954456

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00954456

Key words

Navigation