Skip to main content
Log in

Influences of lipid-modifying agents on hemostasis

  • Hernostasis And Thrombolysis
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

Drugs affecting lipid metabolism may influence, to a variable extent, the hemostatic system, that is, platelet activation, fibrinogen, and fibrinolysis. These effects may or may not be linked to the activity of these compounds on the lipid/lipoprotein profile. For this reason it may be important to consider the effects of hypolipidemic drugs on the different aspects of hemostasis, because this may allow a better understanding of their clinical use, as well as, eventually, a more proper selection in individual patients. Among the major lipid-lowering agents,fibric acids belong to a multifaceted series of abnormal fatty acids known to interact with a liver nuclear receptor, in turn activating fatty acid catabolism. A similar activity may be exerted byn-3 fatty acids from fish, as well as by other chemically related or unrelated compounds. Among fibric acids all but gemfibrozil can reduce fibrinogen levels; this last drug can, however, apparently activate fibrinolysis. Among the selective cholesterol-lowering medications, bothresins andHMG CoA reductase inhibitors may reduce, in some patients, over prolonged periods of treatment, platelet sensitivity to major aggregants. This effect may be seen best with non-liver-selective agents (e.g., simvastatin), although recent data cast doubt on its constancy. A direct comparative evaluation of different HMG CoA reductase inhibitors on platelet aggregability has never been carried out. These last drugs may also reduce the circulating levels of the tissue factor pathway inhibitor (TFPI), transported by LDL in plasma, which is a potentially negative effect. A lipid-lowering molecule with antioxidant activity, for example,probucol, may also possibly play a role in controlling platelet activation. Probucol was recently shown to reduce the excretion of thromboxane metabolites in patients with homocystinuria. The complex pattern of effects of this molecule may, however, also suggest other mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ross R. The pathogenesis of atherosclerosis. In: Braunwald E, ed.Heart Disease. Philadelphia: W.B. Saunders 1988:1135–1152.

    Google Scholar 

  2. Fuster V, Badimon L, Cohen M, Ambrose JA, Badimon JJ, Chesebro JH. Insights into the pathogenesis of acute ischemic syndromes.Circulation 1988;77:1213–1220.

    Google Scholar 

  3. Meade TW, Brozovic M, Chakrabarti RR, et al. Haemostatic function and ischemic heart disease: Principal results of the Northwich Park heart study.Lancet 1986;2:533–537.

    Google Scholar 

  4. Colli S, Maderna P, Tremoli E, et al. Prostacyclin-lipoprotein interactions: Studies on human platelet aggregation and adenylate cyclase.Biochem Pharmacol 1985;34:2451–2457.

    Google Scholar 

  5. Frostegard J, Nilsson J, Haegerstrand A, Hamsten A, Wigzell H, Gidlund M. Oxidized low density lipoprotein induces differentiation and adhesion of human monocytes and the monocytic cell line U937.Proc Natl Acad Sci USA 1990;87:904–908.

    Google Scholar 

  6. Triau JE, Meydani SN, Schaefer EJ. Oxidized low density lipoprotein stimulates prostacyclin production by adult human vascular endothelial cells.Arteriosclerosis 1988;8:810–818.

    Google Scholar 

  7. Berliner JA, Territo MC, Sevanian A, et al. Minimally modified low density lipoprotein stimulates monocyte endothelial interactions.J Clin Invest 1989;85:1260–1266.

    Google Scholar 

  8. Tremoli E, Maderna P, Sirtori M, Sirtori CR. Platelet aggregation and malondialdehyde formation in type IIa hypercholesterolemic patients.Haemostasis 1979;8:47–53.

    Google Scholar 

  9. Tremoli E, Maderna P, Colli S, Morazzoni G, Sirtori M, Sirtori CR. Increased platelet sensitivity and thromboxane B2 formation in type-II hyperlipoproteinaemic patients.Eur J Clin Invest 1984;14:329–333.

    Google Scholar 

  10. Tremoli E, Folco G.C., Agradi E, Galli C. Platelet thromboxane and serum cholesterol.Lancet 1979;1:106–107.

    Google Scholar 

  11. Oliva DW, Maderna P, Accomazzo MR, Nicosia S, Tremoli E. Iloprost binding and inhibition of aggregation in platelet rich plasma. Differences between normal and type IIa hypercholesterolemic subjects.Biochem Pharmacol 1989;38:39–45.

    Google Scholar 

  12. Löbel P, Steinhagen-Thiessen E, Schrör K. Cholestiramine treatment of type IIa hypercholesterolemia normalizes platelet reactivity against prostacyclin.Eur J Clin Invest 1988;18:256–260.

    Google Scholar 

  13. Phillips DR, Charo IF, Parise LV, Fitzgerald LA. The platelet membrane glycoprotein IIb-IIIa complex.Blood 1988;71:831–843.

    Google Scholar 

  14. Cook NS, Ubben D. Fibrinogen as a major risk factor in cardiovascular disease.Topics Pharm Sci 1990;11:444–451.

    Google Scholar 

  15. Mehta J, Mehta P, Lawson D, Saldeen T. Plasma tissue plasminogen activator inhibitor levels in coronary artery disease: Correlation with age and serum triglyceride concentrations.J Am Coll Cardiol 1987;9:263–268.

    Google Scholar 

  16. Juhan-Vague I, Vague P, Alessi MC, et al. Relationships between plasma insulin triglyceride body mass index and plasminogen activator inhibitor 1.Diab Metab 1987;13:331–336.

    Google Scholar 

  17. Reaven GM. Role of insulin resistance in human disease.Diabetes 1988;37:1595–1607.

    Google Scholar 

  18. Hertz R, Bar-Tana J, Sujatta M, Pill J, Schmidt EH, Fahimi HD. The induction of liver peroxisomal proliferation by β,β'-methyl-substituted hexadecanedioic acid (MEDICA 16).Biochem Pharmacol 1988;37:3571–3577.

    Google Scholar 

  19. Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators.Nature 1990;347:645–649.

    Google Scholar 

  20. Aoyama T, Hardwick JP, Imaoka S, Funae Y, Gelboin HV, Gonzalez FJ. Clofibrate-inducible rat hepatic P450s IVA1 and IVA3 catalyze the ω- and (ω-1)-hydroxylation of fatty acids and the ω-hydroxylation of prostaglandins E1 and F2α.J Lipid Res 1990;31:1477–1482.

    Google Scholar 

  21. Sirtori CR, Franceschini G. Effects of fibrates on serum lipids and atherosclerosis.Pharmacol Ther 1988;37:167–191.

    Google Scholar 

  22. Patsch JR, Prasad S, Gotto AM, Jr., Bengtsson-Olivecrona G. Postprandial lipemia. A key for the conversion of high density lipoprotein 2 into high density lipoprotein 3 by hepatic lipase.J Clin Invest 1984;74:2017–2023.

    Google Scholar 

  23. Franceschini G, Calabresi L, Maderna P, Galli C, Gianfranceschi G, Sirtori CR. ω-3 fatty acids selectively raise high-density lipoprotein 2 levels in healthy volunteers.Metabolism 1991;40:1283–1286.

    Google Scholar 

  24. De Carvalho AC, Colman RW, Lees RS. Clofibrate reversal of platelet hypersensitivity in hyperbetalipoproteinemia.Circulation 1974;50:570–574.

    Google Scholar 

  25. Sirtori CR, Franceschini G, Gianfranceschi G, et al. Effects of gemfibrozil on plasma lipoprotein-apolipoprotein distribution and platelet-reactivity in patients with hypertriglyceridemia.J Lab Clin Med 1987;110:279–286.

    Google Scholar 

  26. Crepaldi G, Baggio G, Arca M, et al. Pravastatin vs. gemfibrozil in the treatment of primary hypercholesterolemia.Arch Intern Med 1991;151:146–152.

    Google Scholar 

  27. Pazzucconi F, Mannucci L, Mussoni L, et al. Bezafibrate lowers plasma lipids, fibrinogen and platelet aggregability in hypertriglyceridemic patients.Eur J Clin Pharmacol 1992;43:219–223.

    Google Scholar 

  28. von Schacky C, Fischer S, Weber PC. Long-term effects of dietary marine ω-3 fatty acids upon plasma and cellular lipids platelet function and eicosanoid formation in humans.J Clin Invest 1985;76:1626–1631.

    Google Scholar 

  29. Andersen P, Smith P, Seljeflot I, Brataker S, Arnesen H. Effects of gemfibrozil on lipids and haemostasis after myocardial infarction.Thromb Haemost 1990;63:174–177.

    Google Scholar 

  30. Niort G, Bulgarelli A, Cassader M, Pagano G. Effect of short term treatment with bezafibrate on plasma fibrinogen fibrinopeptide. A platelet activation and blood filterability in atherosclerotic hyperfibrinogenemic patients.Atherosclerosis 1988;71:113–119.

    Google Scholar 

  31. Okazaki M, Suzuki M, Oguchi K. Changes in coagulative and fibrinolytic activities in Triton WR-1339 induced hyperlipidemia in rats.Jpn J Pharmacol 1990;52:353–361.

    Google Scholar 

  32. Ernst E, Saradeth T, Achhammer G. N-3 fatty acids and acute-phase proteins.Eur J Clin Invest 1991;21:77–82.

    Google Scholar 

  33. Fumeron F, Brigant L, Ollivier V, et al. N-3 polyunsaturated fatty acids raise low-density lipoproteins, high-density lipoprotein 2, and plasminogen-activator inhibitor in healthy young men.Am J Clin Nutr 1991;54:118–122.

    Google Scholar 

  34. Satoshi F, Burton ES. Direct effects of gemfibrozil on the fibrinolytic system: Diminution of synthesis of plasminogen activator inhibitor type I.Circulation 1992;85:1888–1893.

    Google Scholar 

  35. Montanari G, Bondioli A, Rizzato G, et al. Treatment with low dose metformin in patients with peripheral vascular disease.Pharmacol Res 1992;25:63–73.

    Google Scholar 

  36. Vague P, Juhan-Vague I, Alessi MC, Badier C, Valadier J. Metformin decreases the high plasminogen inhibition capacity, plasma insulin and triglyceride levels in non-diabetic obese subjects.Thromb Haemost 1987;57:326–328.

    Google Scholar 

  37. Briones ER, Steiger D, Palumbo PJ, Kottke BA. Primary hypercholesterolemia: Effect of treatment on serum lipids, lipoprotein fractions, cholesterol absorption, sterol balance and platelet aggregation.Mayo Clin Proc 1984;59:251–257.

    Google Scholar 

  38. Zucker ML, Trowbridge C, Krehbiel P, Jackson B, Chernoff SB, Dujovne CA. Platelet function in hypercholesterolaemics before and after hypolipidemic drug therapy.Haemostasis 1986;16:57–64.

    Google Scholar 

  39. Schrör K, Löbel P, Steinhagen-Thiessen E. Simvastatin reduces platelet-thromboxane formation and restores normal platelet sensitivity against prostacyclin in type IIa hypercholesterolemia.Eicosanoids 1989;2:39–45.

    Google Scholar 

  40. Davi G, Averna M, Novo S, et al. A. Effects of synvinolin on platelet aggregation and thromboxane B2 synthesis in type IIa hypercholesterolemic patients.Atherosclerosis 1989;79:79–83.

    Google Scholar 

  41. Barrow SE, Stratton PD, Benjamin N, Brassfield T, Ritter JM. Reduction of LDL cholesterol by pravastatin does not influence platelet activation in patients with mild hypercholesterolemia at risk of coronary heart disease.Br J Clin Pharmacol 1991;32:127–129.

    Google Scholar 

  42. Sirtori CR. Pharmacology and mechanism of action of the new HMG-CoA reductase inhibitors.Pharmacol Res 1990;22:555–563.

    Google Scholar 

  43. Davi G, Averna M, Catalano I, et al. Increased thromboxane biosynthesis in type IIa hypercholesterolemia.Circulation 1992;85:1792–1798.

    Google Scholar 

  44. Schick BP, Schick PK. The effect of hypercholesterolemia on guinea pig platelets, erythrocytes and megakaryocytes.Biochim Biophys Acta 1985;833:291–302.

    Google Scholar 

  45. Sandset PM, Lund H, Norseth J, Abildgaard U, Ose L. Treatment with hydroxymethylglutaryl-coenzyme A reductase inhibitors in hypercholesterolemia induces changes in the components of the extrinsic coagulation system.Arterioscler Thromb 1991;11:138–145.

    Google Scholar 

  46. Nordfang O, Bjorn SE, Valentin S, et al. The C-terminus of tissue factor pathway inhibitor is essential to its anticoagulant activity.Biochemistry 1991;30:10371–10376.

    Google Scholar 

  47. Broze GJ, Jr., Warren LA, Novotny WF, Higuchi DA, Girard JJ, Miletich JP. The lipoprotein-associated coagulation inhibitor that inhibits factor VII-tissue factor complex also inhibits Xa: Insight into its possible mechanism of action.Blood 1988;71:335–343.

    Google Scholar 

  48. Rapaport S. The extrinsic pathway inhibitor: A regulator of tissue factor-dependent blood coagulation.Thromb Haemost 1991;66:6–15.

    Google Scholar 

  49. Buckley MMT, Goa KL, Price AH, Brogden RN. Probucol, a reappraisal of its pharmacological properties and therapeutic use in hypercholesterolemia.Drugs 1989;37:761–800.

    Google Scholar 

  50. Carew TE, Schwenke DC, Steinberg D. Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: Evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage rich fatty streaks slowing the progression of atherosclerosis in the WHHL rabbit.Proc Natl Acad Sci USA 1987;84:7725–7729.

    Google Scholar 

  51. Franceschini G, Chiesa G, Sirtori CR. Probucol increases cholesteryl ester transfer protein activity in hypercholesterolaemic patients.Eur J Clin Invest 1991;21:384–388.

    Google Scholar 

  52. Parthasarathy S, Young SG, Witztum JL, Pittman RC, Steinberg D. Probucol inhibits oxidative modification of low density lipoprotein.J Clin Invest 1986;77:641–644.

    Google Scholar 

  53. Mao SJT, Yates MT, Parker RA, Chi EM, Jackson RL. Attenuation of atherosclerosis in a modified strain of hypercholesterolemic Watanabe rabbits with use of a probucol analogue (MDL 29, 311) that does not lower serum cholesterol.Arterioscler Thromb 1991;11:1266–1275.

    Google Scholar 

  54. Di Minno G, Davi G, Margaglione M, Cirillo F, Ciabattoni G, Patrono C. Enhanced thromboxane biosynthesis in homozygous cystathionine β-synthase deficiency.Clin Res 1992;40:202a.

    Google Scholar 

  55. Vesterqvist O, Green K. Urinary excretion of 2,3-dinorthromboxane B2 in man under normal conditions, following drugs and during some pathological conditions.Prostaglandins 1984;27:627–644.

    Google Scholar 

  56. Mori Y, Wada H, Nagano Y, Deguchi K, Kita T, Shirakawa S. Hypercoagulable state in the Watanabe heritable hyperlipidemic rabbit: an animal model for the progression of atherosclerosis—Effect of probucol on coagulation.Thromb Haemostas 1989;61:140–143.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sirtori, C.R., Colli, S. Influences of lipid-modifying agents on hemostasis. Cardiovasc Drug Ther 7, 817–823 (1993). https://doi.org/10.1007/BF00878936

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00878936

Key Words

Navigation