Skip to main content
Log in

Nitrogen regulation in fungi

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Nitrogen regulation has been extensively studied in fungi revealing a complex array of interacting regulatory genes. The general characterisation of the systems inAspergillus nidulans andNeurospora crassa shall be briefly described, but much of this paper will concentrate specifically on the recent molecular characterisation ofareA, the principle regulatory gene fromA. nidulans which mediates nitrogen metabolite repression. Three areas shall be explored in detail, firstly the DNA binding domain, which has been characterised extensively by both molecular and genetic analysis. Secondly we shall report recent analysis which has revealed the presence of related DNA binding activities inA. nidulans. Finally we shall discuss the mechanism by which the nitrogen state of the cell is monitored by theareA product, in particular localisation of the domain within theareA product which mediates the regulatory response within the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arceci RJ, King AAJ, Simon MC, Orkin SJ & Wilson DB (1993). Mouse GATA-4: A retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart. Mol. Cell. Biol. 13(4): 2235–2246

    PubMed  Google Scholar 

  • Arst HN Jr (1990) Wide domain regulation of gene expression inAspergillus nidulans with specific attention to the role of themeaB gene. In: Heslot H, Davies J, Florent J, Bobichon L, Durand G & Penasse L (Eds) Proceedings of the 6th International Symposium on Genetics of Industrial Micro-organisms (GIM90), Vol II (pp 555–566). Society Francaise de Microbiologie, Paris

    Google Scholar 

  • Arst HN Jr & Bailey CR (1977) The regulation of carbon metabolism inAspergillus nidulans. In: Smith JE & Pateman JA (Eds) Genetics and Physiology ofAspergillus (pp 131–146). Academic Press, New York

    Google Scholar 

  • Arst HN Jr & Cove DJ (1973) Nitrogen metabolite repression inAspergillus nidulans. Mol. Gen. Genet. 126: 111–142

    PubMed  Google Scholar 

  • Arst HN Jr & Scazzocchio C (1975) Initiator constitutive mutation with an ‘up-promoter’ effect inAspergillus nidulans. Nature (London) 254: 31–34

    PubMed  Google Scholar 

  • Arst HN Jr & Scazzocchio C (1985) Formal genetics and molecular biology of the control of gene expression inAspergillus nidulans. In: Bennet JW & Lasure LL (Eds) Gene Manipulations in Fungi (pp 309–343). Academic Press, New York

    Google Scholar 

  • Arst HN Jr, Kudla B, Martinez-Rossi N, Caddick MX, Sibley S & Davies RW (1989)Aspergillus and mouse share a new class of ‘zinc finger’ protein. Trends in Genetics 5: 291

    PubMed  Google Scholar 

  • Arst HN Jr, Tollervey D & Caddick MX (1989) A translocation associated, loss-of-function mutation in the nitrogen metabolite repression regulatory gene ofAspergillus nidulans can revert intracistronicially. Mol. Gen. Genet. 215: 364–367

    PubMed  Google Scholar 

  • Bailey C & Arst HN Jr (1975) Carbon catabolite repression inAspergillus nidulans. Eur. J. Biochem. 51: 573–577

    PubMed  Google Scholar 

  • Bysani N, Daugherty JR & Cooper TG, (1991). Saturation mutagenesis of theUAS NTR (GATAA) responsible for nitrogen catbaolite repression-sensitive transcriptional activation of the allantoin pathway genes inSaccharomyces cerevisiae. J. Bacteriol. 173: 4977–4982

    PubMed  Google Scholar 

  • Caddick MX (in press). Nitrogen metabolite repression. In: Kinghorn JR & Martinelli SD (Eds) Genetics and Physiology ofAspergillus, Elsevier, Amsterdam

  • Caddick MX & Arst HN Jr (1990) Nitrogen regulation inAspergillus: Are two fingers better than one? Gene 99: 123–127

    Google Scholar 

  • Caddick MX & Turner AS (1993) The control of gene expression in filamentous fungi. In: Broda PMA, Oliver SG, & Sims PFG (Eds) The Eukaryotic Genome Organisation and Regulation (pp 241–273). Cambridge University Press, New York

    Google Scholar 

  • Caddick MX, Brownlee AG & Arst HN Jr (1986) Regulation of gene expression by pH of the growth mediums inAspergillus nidulans. Mol. Gen. Genet. 203: 346–353

    PubMed  Google Scholar 

  • Chiba T, Ikawa Y & Todokoro T (1991) GATA-1 transactivates erythropoietin receptor gene, and erythropoietin receptor-mediated signals enhance GATA-1 gene expression. Nucleic Acids Res. 19(14): 3843–3848

    PubMed  Google Scholar 

  • Cooper TG, Ferguson, D, Rai R & Bysani N (1990) TheGLN3 gene product is required for transcriptional activation of allantoin system gene expression inSaccheromyces serevisiae. J. Bacteriol. 172: 1014–1018

    PubMed  Google Scholar 

  • Cove DJ (1979) Genetic studies of nitrate assimilation inAspergillus nidulans. Biol. Rev. Cambr. Philos. Soc. 54: 291–327

    Google Scholar 

  • Crawford NM & Arst HN Jr (1993) The Molecular genetics of nitrate assimilation in fungi and plants. Ann. Rev. Genet. 27: 115–146

    PubMed  Google Scholar 

  • Cunningham TS & Cooper TG (1991) Expression of the DAL80 gene whose product is homologous to the GATA factors and is a negative regulator of multiple catabolic genes inSaccharomyces cerevesiae, is sensitive to nitrogen catabolite repression. Mol. Cell. Biol. 11: 6205–6215

    PubMed  Google Scholar 

  • Daniel-Vedele F & Caboche M (1993) A tobacco cDNA clone encoding a GATA-1 zinc-finger protein homologous to regulators of nitrogen metabolism in fungi. Mol. Gen. Genet. 240: 365–373

    PubMed  Google Scholar 

  • Daugherty JR, Rai R, El Berry HM & Cooper TG (1993) Regulatory circuit for responses of nitrogen catabolic gene expression to the GLN3 and DAL80 proteins and nitrogen catabolite repression inSaccharomyces cerivisiae. J. Bacteriol 175: 64–73

    PubMed  Google Scholar 

  • Davis MA & Hynes MJ (1987) Complementation ofareA regulatory gene mutations ofAspergillus nidulans by the heterologous regulatory genenit-2 ofNeurospora crassa. Proc. Natl. Acad. Sci. USA 84: 3753–3757

    PubMed  Google Scholar 

  • Dorfman DM, Wilson DB, Bruns GAP & Orkin SH (1992) Human transcription tactor GATA-2. J. Biol. Chem. 267: 1279–1285

    PubMed  Google Scholar 

  • Drainas C, Kinghorn JR & Pateman JA (1977) Aspartic hydroxamate resistance and asparaginase regulation in the fungusAspergillus nidulans. J. Gen. Microbiol. 98: 493–501

    Google Scholar 

  • Dunn-Coleman NS, Tomsett AB & Garrett RH (1980) The regulation of nitrate assimilation inNeurospora crassa: Biochemical analysis of thenmr-1 mutants. Mol. Gen. Genet. 182: 234–239

    Google Scholar 

  • Evans T & Felsenfeld G (1989) The erythroid-specific transcription factor eryf-1: A new finger protein. Cell 5: 877–885

    Google Scholar 

  • Fu Y-H & Marzluf GA (1990a).nit-2, the major nitrogen regulatory gene ofNeurospora crassa, encodes a protein with a putative zinc finger DNA-binding domain. Mol. Cell. Biol. 10: 1056–1065

    PubMed  Google Scholar 

  • Fu Y-H & Marzluf GA (1990b) nit-2 the major positive-acting nitrogen regulatory gene ofNeurospora crassa, encodes a sequence-specific DNA-binding protein. Proc. Natl. Acad. Sci. USA 87: 5331–5335

    PubMed  Google Scholar 

  • Fu Y-H, Young JL & Marzluf GA (1988) Molecular cloning and characterization of a negative-acting nitrogen regulatory gene ofNeurospora crassa. Mol. Gen. Genet. 214: 120–128

    Google Scholar 

  • Gussin GN, Ronson CW & Ausbel FM (1986) Regulation of nitrogen fixation. Ann. Rev. Genet. 20: 567–591

    PubMed  Google Scholar 

  • Ho I-C, Vorhees P, Marin N, Oakley BK, Tsai S-F, Orkin SH & Leiden JM (1991) Human GATA-3: A lineage restricted transcription factor that regulates the expression of the T cell receptor gene. EMBO J. 10: 1809–1816

    PubMed  Google Scholar 

  • Hunter T & Karin M (1992) The regulation of transcription by phosphorylation. Cell 70: 375–387

    PubMed  Google Scholar 

  • Hynes MJ (1975) Studies on the role of theareA gene in the regulation of nitrogen catabolism inAspergillus nidulans. Austr. J. Biol. Sci. 28: 301–313

    Google Scholar 

  • Joulin V, Bories D, Eleouet J-F, Labastie M-C, Chretien S, Mattei M-G & Romeo PH (1991). A T-cell specific TCR δ DNA-binding protein is a member of the human GATA-binding family. EMBO J. 10: 1809–1816

    PubMed  Google Scholar 

  • Katz ME & Hynes MJ (1989) Characterization of theamdR-controlledlamA andlamB genes ofAspergillus nidulans. Genetics 122: 331–339

    PubMed  Google Scholar 

  • Ko LJ & Engel JD (1993) DNA-binding specificity of the GATA transcription factor family. Mol. Cell. Biol. 13(7): 4011–4022

    PubMed  Google Scholar 

  • Kudla B, Caddick MX, Langdon T, Martinez-Rossi NM, Bennett CF, Sibley S, Davies RW & Arst HN Jr (1990) The regulatory geneareA mediating nitrogen metabolite repression inAspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger. EMBO J. 9: 1355–64

    PubMed  Google Scholar 

  • Magasanik B (1989) Regulation of transcription of theglnALG operon ofE. coli by protein phosphorylation. Biochime 71: 1005–1012

    Google Scholar 

  • Martin DIK & Orkin SH (1990) Transcriptional activation and DNA-binding by the erythroid factor GF-1/NF-E1/Eryfl. Gen. Devel. 4: 1886–1898

    Google Scholar 

  • Marzluf GA (1981) Regulation of nitrogen metabolisem and gene expression in fungi. Microbiol. Rev. 45: 437–461

    PubMed  Google Scholar 

  • Marzluf GA (1993) Regulation of sulfur and nitrogen metabolism in filamentous fungi. Ann. Rev. Microbiol. 47: 31–55

    Google Scholar 

  • Merika M & Orkin SH (1993). DNA-binding specificity of GATA family transcription factors. Mol. Cell. Biol. 13: 3999–4010

    PubMed  Google Scholar 

  • Minehart PL & Magasanik B (1991) Sequence and expression of GLN3, a positive nitrogen regulatory gene ofSaccharomyces cerevisiae encoding a protein with a putative zinc finger DNA-binding domain. Mol. Cell. Biol. 11: 6216–6228

    PubMed  Google Scholar 

  • Moll T, Tebb G, Surana U, Robitsch H & Nasmyth K (1991) The Role of Phosphorylation and the CDC28 Protein Kinase in Cell Cycle-Regulated Nuclear Import of theS. cerevisiae Transcription Factor SW15. Cell 66: 743–758

    PubMed  Google Scholar 

  • Omichinski JG, Trainor C, Evans T Gronenborn AM, Clore GM & Felsenfeld G (1993a). A small single-‘finger’ peptide from the erythroid transcription factor GATA-1 binds specifically to DNA as a zinc or iron complex. Proc. Natl. Acad. Sci. USA 90: 1676–1680

    PubMed  Google Scholar 

  • Omichinski JG, Clore GM, Schaad O, Felsenfeld G, Trainor C, Appella E, Stahl SJ & Gronenborn AM (1993b) NMR Structure of a Specific DNA Complex of Zn-Containing DNA Binding Domain of GATA-1. Science 261: 438–446

    Google Scholar 

  • Orkin SH (1992) GATA-binding transcription factors in haematopoietic cells. Blood 80: 575–581

    PubMed  Google Scholar 

  • Peters B, Merezhinskaya N, Diffley JFX & Noguchi CT (1993) Protein-DNA interactions in the — globin gene silencer. J. Biol. Chem. 268(5): 3430–3437

    PubMed  Google Scholar 

  • Rai R, Genbauffe FS, Sumrada RA & Cooper TG (1989) Identification of sequences responsible for transcriptional activation of the allantoate permease gene in Saccharomyces cerevisiae. Mol. Cell Biol. 9: 602–608

    PubMed  Google Scholar 

  • Shaffer PM & Arst HN Jr (1984) Regulation of pyrimidine salvage inAspergillus nidulans: A role for the major regulatory geneareA mediating nitrogen metabolite repression. Mol. Gen. Genet. 198: 139–145

    PubMed  Google Scholar 

  • Shaffer PM, Arst HN Jr Estberg L, Fernando L, Ly T & Sitter M (1988) An asparaginase ofAspergillus nidulans is subject to oxygen repression in addition to nitrogen metabolite repression. Mol. Gen. Genet. 212: 337–341

    PubMed  Google Scholar 

  • Spieth J, Shim YH, Conrad R & Blumenthal T (1991)elt-1, an embryologically expressed Caenorhabditis elegans gene homologous to the GATA transcription factor family. Mol. Cell. Biol. 11(9): 4651–4659

    PubMed  Google Scholar 

  • Stankovich M, Platt A, Caddick MX, Langdon T, Shaffer, PM & Arst HN Jr (1993). C-terminal truncation of the transcriptional activator encoded byareA inAspergillus nidulans results in both loss-of-function and gain-of-function phenotypes. Mol. Microbiol. 7: 81–87

    PubMed  Google Scholar 

  • Tollervey DW (1981) Aspects of nitrogen metabolic regulation inAspergillus nidulans. Ph.D. Thesis, University of Cambridge

  • Tollervey DW & Arst HN Jr (1981) Mutations to constitutivity and derepression are separate and separable in a regulatory gene ofAspergillus nidulans. Curr. Genet. 4: 63–68

    Google Scholar 

  • Tollervey DW & Arst HN Jr (1982) Domain-wide locus-specific suppression of nitrogen metabolite represed mutations ofAspergillus nidulans. Curr. Genet. 6: 79–85

    Google Scholar 

  • Trainor CC, Evans J, Felsenfeld G & Boguski MS (1990). Structure and evolution of a human erythroid transcription factor. Nature (London) 343: 92–96

    PubMed  Google Scholar 

  • Tsai SF, Martin DI, Zon LI, DAndrea AD, Wong GG & Orkin SH (1989) Cloning of the cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature (London) 339: 446–451

    PubMed  Google Scholar 

  • Voisard C, Wang j, McEvoy, Xu P & Leong SA (1993)urbs1 a gene regulating siderophore biosynthesis inUstilago maydis, encodes a protein similar to the erythroid transcription factor GATA-1. Mol. Cell. Biol. 13: 7091–7100

    PubMed  Google Scholar 

  • Wiame JM, Grenson M & Arst HN Jr (1985) Nitrogen catabolite repression in yeasts and filamentous fungi. Adv. Microbiol. Physiol. 26: 1–87

    Google Scholar 

  • Yamamoto M, Ko LJ, Leonard MW, Beug H, Orkin SH & Engel JD (1990) Activity and tissue specific expression of the transcription factor NF-E1 multigene family. Gen. Devel. 4: 1650–1662

    Google Scholar 

  • Yang H-Y & Evans, T (1992) Distinct roles for the two cGATA-1 finger domains. Mol. Cell. Biol. 12: 4562–4570

    PubMed  Google Scholar 

  • Young JL, Jaran G, Fu Y-H & Marzluf GA (1990) Nucleotide sequence and analysis of NMR, a negative-acting regulatory gene in the nitrogen circuit ofNeurospora crassa. Mol. Gen. Genet. 222: 120–128

    PubMed  Google Scholar 

  • Young JL & Marzluf GA (1991) Molecular comparison of the negative-acting nitrogen control gene,nmr, inNeurosporacrassa and otherNeurospora and fungal species. Biochem. Genet. 29: 447–459

    PubMed  Google Scholar 

  • Zon LI, Tsai S-F, Burgess S, Bolce ME, Harland RM & Orkin SH. (1990) The major human erythroid DNA binding protein (GF-1; NF-E1; Eryf-1): Primary sequence and localization of the gene to the X chromosome. Proc. Natl. Acad. Sci. USA 87: 668–672

    PubMed  Google Scholar 

  • Zon LI, Mather C, Burgess S, Bolce ME, Harland RM & Orkin SH (1991) Expression of GATA-binding proteins during embryonic development inXenopus laevis. Proc. Natl. Acad. Sci. USA 88: 10642–10646

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caddick, M.X., Peters, D. & Platt, A. Nitrogen regulation in fungi. Antonie van Leeuwenhoek 65, 169–177 (1994). https://doi.org/10.1007/BF00871943

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00871943

Key words

Navigation