Skip to main content
Log in

The temperature-programmed desorption of N2 from a Ru/MgO catalyst used for ammonia synthesis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The temperature-programmed desorption (TPD) of N2 from a Ru/MgO catalyst used for ammonia synthesis was studied in a microreactor flow system operating at atmospheric pressure. Saturation with chemisorbed atomic nitrogen (N-*) was achieved by exposure to N2 at 573 K for 14 h and subsequent cooling in N2 to room temperature. With a heating rate of 5 K/min in He, a narrow and fairly symmetric N2 TPD peak at about 640 K results. From experiments with varying heating rates a preexponential factor Ades = 1.5×1010 molecules/(site s) and an activation energy Edes = 158 kJ/mol was derived assuming secondorder desorption. This rate constant of desorption is in good agreement with results obtained with a Ru(0001) single crystal surface in ultra-high vacuum (UHV). The rate of dissociative chemisorption was determined by varying the N2 exposure conditions. Determination of the coverage of N-* was based on the integration of the subsequently recorded N2 TPD traces yielding Aads = 2×10−6 (Pa s)−1 and Eads = 27 kJ/mol. The corresponding sticking coefficient of about 10−14 at 300 K is in agreement with the inertness of Ru(0001) in UHV towards dissociative chemisorption of N2. However, if the whole catalytic surface were in this state, then the resulting rate of N2 dissociation would be several orders of magnitude lower than the observed rate of NH3 formation. Hence only a small fraction of the total Rumetal surface area of Ru/MgO seems to be highly active dominating the rate of ammonia formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.R. Tennison, in:Catalytic Ammonia Synthesis, 1st Ed., ed. J.R. Jennings (Plenum Press), New York, 1991 p. 303.

    Google Scholar 

  2. K. Aika, T. Takano and S. Murata, J. Catal. 136 (1992) 126.

    Google Scholar 

  3. L.R. Danielson, M.J. Dresser, E.E. Donaldson and J.T. Dickinson, Surf. Sci. 71 (1978) 599.

    Google Scholar 

  4. Y. Ogata, K. Aika and T. Onishi, Surf. Sci. 140 (1984) L285.

    Google Scholar 

  5. T. Matsushima, Surf. Sci. 197 (1988) L287.

    Google Scholar 

  6. H. Dietrich, P. Geng, K. Jacobi and G. Ertl, J. Chem. Phys., submitted.

  7. C. Egawa, S. Naito and K. Tamaru, Surf. Sci. 138 (1984) 279.

    Google Scholar 

  8. W. Tsai and W.H. Weinberg, J. Phys. Chem. 91 (1987) 5302.

    Google Scholar 

  9. H. Rauscher, K.L. Kostov and D. Menzel, Chem. Phys. 177 (1993) 473.

    Google Scholar 

  10. J.F. Parmeter, U. Schwalke and W.H. Weinberg, J. Am. Chem. Soc. 110 (1988) 53.

    Google Scholar 

  11. K. Kunimori, M. Osumi, S. Kameoka and S. Ito, Catal. Lett. 16 (1992) 443.

    Google Scholar 

  12. T. Birchem and M. Muhler, Surf. Sci. 334 (1995) L701.

    Google Scholar 

  13. H. Shi, K. Jacobi and G. Ertl, J. Chem. Phys. 99 (1993) 9248.

    Google Scholar 

  14. C. Egawa, T. Nishida, S. Naito and K. Tamaru, J. Chem. Soc. Faraday Trans. I 80 (1984) 1595.

    Google Scholar 

  15. M. Muhler, F. Rosowski and G. Ertl, Catal. Lett. 24 (1994) 317.

    Google Scholar 

  16. O. Hinrichsen, F. Rosowski and M. Muhler, Chem.-Ing.-Tech. 66 (1994) 1375.

    Google Scholar 

  17. K. Aika and K. Tamaru, in:Ammonia: Catalysis and Manufacture, 1st Ed., ed. A. Nielsen (Springer, Berlin, 1995).

    Google Scholar 

  18. B. Fastrup and H.N. Nielsen, Catal. Lett. 14 (1992) 233.

    Google Scholar 

  19. T.Z. Srnak, J.A. Dumesic, B.S. Clausen, E. Törnqvist and N.-Y. Topsøe, J. Catal. 135 (1992) 246.

    Google Scholar 

  20. H. Knözinger, Y. Zhao, B. Tesche, R. Barth, R. Epstein, B.C. Gates and J.P. Scott, Faraday Discussions Chem. Soc. 72 (1982) 53.

    Google Scholar 

  21. P. Moggi, G. Predieri, G. Albanesi, S. Papadopoulos and E. Sappa, Appl. Catal. 53 (1989) L1.

    Google Scholar 

  22. R.A. Dalla Betta, J. Catal. 34 (1974) 57.

    Google Scholar 

  23. F. Rosowski, A. Hornung, O. Hinrichsen, M. Muhler and G. Ertl, Appl. Catal., submitted.

  24. J. Trost, Thesis, Freie Universität Berlin, Germany (1995).

    Google Scholar 

  25. Y.-K. Sun, Y.-Q. Wang, C.B. Mullins and W.H. Weinberg, Langmuir 7 (1991) 1689.

    Google Scholar 

  26. X. Wu, B.C. Gerstein and T.S. King, J. Catal. 118 (1989) 238.

    Google Scholar 

  27. Y. Izumi, M. Hoshikawa and K. Aika, Bull. Chem. Soc. Japan 67 (1994) 3191.

    Google Scholar 

  28. J.A. Dumesic, D.F. Rudd, L.M. Aparicio, J.E. Rekoske and A.A. Trevino,The Microkinetics of Heterogeneous Catalysis, ACS professional reference book (Am. Chem. Soc., Washington, 1993).

    Google Scholar 

  29. F. Rosowski, O. Hinrichsen, A. Hornung, M. Muhler and G. Ertl, Catal. Lett., in preparation.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosowski, F., Hinrichsen, O., Muhler, M. et al. The temperature-programmed desorption of N2 from a Ru/MgO catalyst used for ammonia synthesis. Catal Lett 36, 229–235 (1996). https://doi.org/10.1007/BF00807624

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00807624

Keywords

Navigation