Skip to main content
Log in

1H-NMR study of GM2 ganglioside: evidence that an interresidue amide-carboxyl hydrogen bond contributes to stabilization of a preferred conformation

  • Papers
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Several properties of the exchangeable amide protons of the ganglioside GM2 were studied in detail by1H-NMR spectroscopy in fully deuterated dimethylsulfoxide [2H6]DMSO/2% H2O, and compared with data obtained for the simpler constituent glycosphingolipids GA2 and GM3. In addition to chemical shifts,3 J 2,HN coupling constants, and temperature shift coefficients, the kinetics of NH/2H chemical exchange were examined by following the disappearance of the amide resonances in [2H6]DMSO/2%2H2O. The results included observation of an increase in half-life of theN-acetylgalactosamine acetamido HN by more than an order of magnitude in GM2 compared to GA2, attributable to the presence of the additionalN-acetylneuraminic acid residue. Additional one-dimensional dipolar cross relaxation experiments were also performed on nonexchangeable protons of GM2. The results of all of these experiments support a three-dimensional model for the terminal trisaccharide in which a hydrogen bond is formed between theN-acetylgalactosamine acetamido NH and theN-acetylneuraminic acid carboxyl group. The interaction is proposed to be of the π-acceptor type, a possibility which has not yet been explored in the literature on carbohydrates. The proposed model is discussed in comparison with that of Sabesanet al. (1984,Can J Chem 62: 1034–45), and the models of GM1 proposed more recently by Acquottiet al. (1990,J Am Chem Soc 112:7772–8) and Scarsdaleet al. (1990,Biochemistry 29:9843–55).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Czarniecki MF, Thornton ER (1977)J. Am Chem Soc 99:8273–9.

    Google Scholar 

  2. Czarniecki MF, Thornton ER (1977)J Am Chem Soc 99:8279–82.

    Google Scholar 

  3. Harris PL, Thornton ER (1978)J Am Chem Soc 100:6738–45.

    Google Scholar 

  4. Sillerud LO, Prestegard JH, Yu RK, Schafter DE, Konigsberg WH (1978)Biochemistry 17:2619–28.

    Google Scholar 

  5. Sillerud LO, Yu RK, Schafer DE (1982)Biochemistry 21:1260–71.

    Google Scholar 

  6. Sillerud LO, Yu RK (1983)Carbohydr Res 113:173–88.

    Google Scholar 

  7. Koerner TAW Jr, Prestegard JH, Demou OC, Yu RK (1983)Biochemistry 22:2627–87.

    Google Scholar 

  8. Koerner TAW Jr, Prestegard JH, Demou PC, Yu RK (1983)Biochemistry 22:2687–90.

    Google Scholar 

  9. Sabesan S, Bock K, Lemieux RU (1984)Can J Chem 62:1034–45.

    Google Scholar 

  10. Ong RL, Yu RK (1986)Arch Biochem Biophys 245:157–66.

    Google Scholar 

  11. Acquotti L, Poppe L, Dabrowski J, von der Lieth C-W, Sonnino S, Tettamanti G (1990)J Am Chem Soc 112:7772–8.

    Google Scholar 

  12. Searsdale JN, Prestegard JH, Yu RK (1990)Biochemistry 29:9843–55.

    Google Scholar 

  13. Gordon SL, Wüthrich K (1978)J Am Chem Soc 100:7094–6.

    Google Scholar 

  14. Andersen NH, Nguyen KT, Hartzell C, Eaton HL (1987)J Magn Reson 74:195–211.

    Google Scholar 

  15. Paulsen H, Peters T, Sinnwell V, Lebuhn R, Meyer B (1984)Liebigs Ann Chem 951–76.

  16. Thøgersen H, Lemieux RU, Bock K, Meyer B (1982)Can J Chem 60:44–57.

    Google Scholar 

  17. Gasa S, Mitsuyama T, Makita A (1983)J Lipid Res 24:174–82.

    Google Scholar 

  18. Noggle JH, Schirmer RE (1971)The Nuclear Overhauser Effect. New York: Academic Press.

    Google Scholar 

  19. Wüthrich K (1986)NMR of Proteins and Nucleic Acids, New York: Wiley Interscience.

    Google Scholar 

  20. Kalk A, Berendsen HJC (1976)J Magn Reson 24:343–66.

    Google Scholar 

  21. Solomon I (1955)Phys Rev 99:559–65.

    Google Scholar 

  22. Davis JC Jr, Deb KK (1970)Adv Magn Reson 4:201–70.

    Google Scholar 

  23. Vinogradov SN, Linnell RH (1971)Hydrogen Bonding. New York: Van Nostrand-Reinhold.

    Google Scholar 

  24. Tichy M (1965) InAdvances in Organic Chemistry: Methods and Results (Raphael RA, Taylor EC, Wynberg H, eds) Vol 5, pp. 115–298. New York: Wiley.

    Google Scholar 

  25. Kleinfelter DC (1967)J Am Chem Soc 89:1734–5.

    Google Scholar 

  26. Fritzsche H (1965)Spectrochim Acta 21:799–813.

    Google Scholar 

  27. Shulgin AT, Kerlinger HO (1966)Chem Commun 249–50.

  28. Allerhand A. Schleyer P von R (1963)J Am Chem Soc 85:866–70.

    Google Scholar 

  29. Oki M, Iwamura H (1963)Bull Chem Soc Japan 35:1552–6.

    Google Scholar 

  30. Oki M, Iwamura H (1963)Bull Chem Soc Japan 36:1–4.

    Google Scholar 

  31. Joris L, Schleyer P von R (1968)J Am Chem Soc 90:4599–611.

    Google Scholar 

  32. Armand Y, Arnaud P (1964)Ann Chim 9:433–42.

    Google Scholar 

  33. Linás M, Klein MP (1975)J Am Chem Soc 97:4731–7.

    Google Scholar 

  34. Kopple KD, Go A (1977)J Am Chem Soc 99:7698–704.

    Google Scholar 

  35. Kessler H, Bernd M, Kogler H, Zarbock J, Sorensen OW, Bodenhausen G, Ernst RR (1983)J Am Chem Soc 105:6944–58.

    Google Scholar 

  36. Pope M, Mascagni P, Gibbons WA, Ciufetti LM, Knoche LM (1984)J Am Chem Soc 106:3863–4.

    Google Scholar 

  37. Kartha G, Bhandary KK, Kopple K, Go A, Zhu P (1984)J Am Chem Soc 106:3844–50.

    Google Scholar 

  38. Gellman SH, Adams BR, Dado GP (1990)J Am Chem Soc 112:460–1.

    Google Scholar 

  39. Heatley F, Scott JE, Jeanloz TRW, Waker-Nasir E (1982)Carbohydr Res 99:1–11.

    Google Scholar 

  40. Scott JE, Heatley F, Jones MN, Wilkinson A, Olavesen AH (1983)Eur J Biochem 130:491–5.

    Google Scholar 

  41. St Jacques M, Sundarajan PR, Taylor KJ, Marchessault RH (1976)J Am Chem Soc 98:4386–91.

    Google Scholar 

  42. Harvey JM, Symons MCR, Naftalin RJ (1976)Nature 261:435–6.

    Google Scholar 

  43. Buffington LA, Blackburn DW, Hamilton CL, Jarvis TC, Knowles JJ, Lodwick PA, McAllister LM, Neidhart DJ, Serumgard JL (1989)J Am Chem Soc 111:2451–4.

    Google Scholar 

  44. Scott JE, Heatley F, Moorcroft D, Olavesen AH (1981)Biochem J 199:829–32.

    Google Scholar 

  45. Karplus M (1959)J Phys Chem 30:11–15.

    Google Scholar 

  46. Bystrov VF (1976)Progr Nucl Magn Reson Spectrosc 10:41–82.

    Google Scholar 

  47. Pardi AM, Billeter M, Wüthrich K (1984)J Mol Biol 180:741–51.

    Google Scholar 

  48. Scott JE, Heatley F, Hull WH (1984)Biochem J 220:197–205.

    Google Scholar 

  49. Bystrov VF, Ivanov VT, Portnova SL, Balashova TA, Ovchinnikov YA (1973)Tetrahedron 29:873–7.

    Google Scholar 

  50. Poppe L, von der Lieth C-W, Dabrowski J (1990)J Am Chem Soc 112:7762–71.

    Google Scholar 

  51. Yadav JS, Luger P (1983)Carbohydr Res 119:57–73.

    Google Scholar 

  52. Popov EM, Zheltova VN (1971)J Mol Struct 10:211–30.

    Google Scholar 

  53. Richarz R, Wüthrich K (1978)J Magn Reson 30:147–50.

    Google Scholar 

  54. Breg J, Kroon-Batenburg LMJ, Strecker G, Montreuil J, Vliegenthart JFG (1989)Eur J Biochem 178:727–39.

    Google Scholar 

  55. Poppe L, Dabrowski J, von der Lieth C-W, Numata M, Ogawa T (1989)Eur J Biochem 180:337–42.

    Google Scholar 

  56. Bechtel B, Wand AJ, Wroblewski, K, Koprowski H, Thurin J (1990)J Biol Chem 265:2028–37.

    Google Scholar 

  57. Homans SW (1990)Biochemistry 29:9110–18.

    Google Scholar 

  58. IUPAC-IUB Commission on Biochemical Nomenclature (1970)J Biol Chem 245:6489–97.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levery, S.B. 1H-NMR study of GM2 ganglioside: evidence that an interresidue amide-carboxyl hydrogen bond contributes to stabilization of a preferred conformation. Glycoconjugate J 8, 484–492 (1991). https://doi.org/10.1007/BF00769848

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00769848

Keywords

Navigation