Skip to main content
Log in

Rotating coordinates as tools for calculating circular geodesics and gyroscopic precession

  • Research Articles
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

If an axially symmetric stationary metric is given in standard form (i.e. in coordinates adapted to the symmetries) the transformationφφ′ =φ-ωt (ω=constant) of the azimuthal angle leads to another such standard form. The spatial latticeL′ corresponding to the latter rotates at angular velocityω relative to the latticeL of the former. For the standard form of a stationary metric there are simple formulae giving the four-acceleration of a given lattice point and the rotation of a gyroscope at a given lattice point. Applying these formulae toL′, we find the condition for circular paths about the axis inL to be 4-geodesic, and also the precession of gyroscopes along circular paths which are not necessarily geodesic. Among other examples we re-obtain the complete geodesic structure of the Gödel universe, and the gyroscopic precessions associated with the names of Thomas, Fokker and de Sitter, and Schiff.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Landau, L. D., and Lifshitz, E. M. (1971).The Classical Theory of Fields, (Pergamon Press, Oxford/Addison-Wesley, New York) 3rd. ed.

    Google Scholar 

  2. Kramer, D., Stephani, H., MacCallum, M. A. H., and Herlt, E. (1980).Exact Solutions of Einstein's Field Equations (Cambridge University Press, Cambridge)

    Google Scholar 

  3. Rosenblum, A. (1987).Nuovo Cimento C,10, 645.

    Google Scholar 

  4. Hawking, S. W., and Ellis, G. F. R. (1973).The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge)

    Google Scholar 

  5. Thomas, L. H. (1926).Nature,117, 514; (1927).Phil. Mag.,3, 1.

    Google Scholar 

  6. Fokker, A. D. (1920).Kon. Akad. Weten. Amsterdam, Proc.,23, 729.

    Google Scholar 

  7. de Sitter, W. (1920).Mon. Not. Roy. Astron. Soc.,77, 155, 481.

    Google Scholar 

  8. Rindler, W. (1977).Essential Relativity, (Springer-Verlag, Berlin) 2nd. ed.

    Google Scholar 

  9. Schiff, L. I. (1960).Phys. Rev. Lett.,4, 215; (1960).Proc. Nat. Acad. Sci.,46, 871.

    Google Scholar 

  10. Synge, J. L., and Schild, A. (1949).Tensor Calculus, (University of Toronto Press, Toronto).

    Google Scholar 

  11. Shapiro, I. I., Reasenberg, R. D., Chandler, J. F., and Babcock, R. W. (1988).Phys. Rev. Lett.,61, 2643.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rindler, W., Perlick, V. Rotating coordinates as tools for calculating circular geodesics and gyroscopic precession. Gen Relat Gravit 22, 1067–1081 (1990). https://doi.org/10.1007/BF00757816

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00757816

Keywords

Navigation