Skip to main content
Log in

The solubility control of rare earth elements in natural terrestrial waters and the significance of PO 3−4 and CO 2−3 in limiting dissolved rare earth concentrations: A review of recent information

  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Rare earth element (REE) concentrations in alkaline lakes, circumneutral pH groundwaters, and an acidic freshwater lake were determined along with the free carbonate, free phosphate, and free sulfate ion concentrations. These parameters were used to evaluate the saturation state of these waters with respect to REE phosphate and carbonate precipitates. Our activity product estimates indicate that the alkaline lake waters and groundwaters are approximately saturated with respect to the REE phosphate precipitates but are significantly undersaturated with respect to REE carbonate and sulfate precipitates. On the other hand, the acidic lake waters are undersaturated with respect to REE sulfate, carbonate, and phosphate precipitates. Although carbonate complexes tend to dominate the speciation of the REEs in neutral and alkaline waters, our results indicate that REE phosphate precipitates are also important in controlling REE behavior. More specifically, elevated carbonate ion concentrations in neutral to alkaline natural waters tend to enhance dissolved REE concentrations through the formation of stable REE-carbonate complexes whereas phosphate ions tend to lead to the removal of the REEs from solution in these waters by the formation of REE-phosphate salts. Removal of REEs by precipitation as phosphate phases in the acid lake (pH=3.6) is inconsequential, however, due to extremely low [PO 3−4 ] F concentrations (i.e., ∼ 10−23 mol/kg).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan C., Schiff S., Pierson D., English M., Ecclestone M. and Adams P. (1987) Colour Lake, Axel Heiberg Island, N.W.T., A naturally occurring acid, High Arctic lake — data report. In:Field Research on Axel Heiberg Island, N.W.T., Canada (ed. P. Adams), McGill Axel Heiberg Research Report, Miscellaneous Papers No. 2, Center for Northern Studies and Research, McGill University, Montreal.

    Google Scholar 

  • Balistrieri L., Brewer, P. G. and Murray J. W. (1981) Scavenging residence times of trace metals and surface chemistry of sinking particles in the deep ocean,Deep-Sea Res. 28A, 101–121.

    Google Scholar 

  • Byrne R.H. and Kim K.-H. (1993) Rare earth precipitation and coprecipitation behavior: The limiting role of PO 3−4 on dissolved rare earth concentrations in seawater,Geochim. Cosmochim. Acta 57, 519–526.

    Google Scholar 

  • Byrne R. H. and Kim K.-H. (1990) Rare earth element scavenging in sea water,Geochim. Cosmochim. Acta 54, 2645–2656.

    Google Scholar 

  • Byrne R. H., Lee J. H. and Bingler L. S. (1991) Rare earth element complexation by PO 3−4 ions in aqueous solution,Geochim. Cosmochim. Acta 55, 2729–2735.

    Google Scholar 

  • Cantrell K. J. and Byrne R. H. (1987) Rare earth element complexation by carbonate and oxalate ions,Ceochim. Cosmochim. Acta 51, 597–605.

    Google Scholar 

  • Choppin G. R. (1989) Soluble rare earth and actinide species in seawater,Mar. Chem. 28, 19–26.

    Google Scholar 

  • DeBaar H. J. W., Bacon M. P. and Brewer P. G. (1983) Rare-earth distributions with a positive Ce anomaly in the Western North Atlantic Ocean,Nature 301, 324–327.

    Google Scholar 

  • DeBaar, H. J. W., Bacon M. P. and Brewer P. G. (1985) Rare earth elements in the Pacific and Atlantic Oceans,Geochim. Cosmochim. Acta 49, 1943–1959.

    Google Scholar 

  • Domagalski J. L., Eugster H. P. and Jones B. F. (1990) Trace metal geochemistry: Walker, Mono and Great Salt Lakes, in:Fluid-Mineral Interactions: A Tribute to H. P. Eugster (eds. R. J. Spencer and I. M. Chou), Pergamon, pp. 315–353.

  • Elderfield H. and Greaves M. J. (1982) The rare earth elements in seawater,Nature 296, 214–219.

    Google Scholar 

  • Firsching F. H. and Brune S. N. (1991) Solubility products of the trivalent rare-earth phosphates,J. Chem. Eng. Data 36, 93–95.

    Google Scholar 

  • Firsching F. H. and Mohammadzadel J. (1986) Solubility products of the rare-earth carbonates,J. Chem. Eng. Data 31, 40–42.

    Google Scholar 

  • Jellison R. and Melack J. M. (1988) Photosynthetic activity of phytoplankton on its relation to environmental factors in hypersaline Mono Lake, California,Hydrobiologia 158, 69–88.

    Google Scholar 

  • Johannesson K. H. and Lyons W. B. (1994) The rare earth element geochemsity of Mono Lake water and the importance of carbonate complexing,Limnol. Oceanogr. 39, 1141–1154.

    Google Scholar 

  • Johannesson K. H. and Lyons W. B. (1995) Rare earth element geochemistry of Colour Lake, an acidic freshwater lake on Axel Heiberg Island, Northwest Territories, Canada,Chem. Geol. 119, 209–223.

    Google Scholar 

  • Johannesson K. H., Lyons W. B. and Bird D. A. (1994) Rare earth element concentrations and speciation in alkaline lakes from the western U.S.A.,Geophys. Res. Lett. 21, 773–776.

    Google Scholar 

  • Johannesson K. H., Stetzenbach K. J., Hodge V. F., Rabinowitz I. and Kreamer D. K. (in review) Rare earth element concentrations and speciation in groundwater from Ash Meadows, Nevada and Death Valley, California and Nevada,Water Resour. Res..

  • Jonasson R. G., Bancroft G. M. and Nesbitt H. W. (1985) Solubilities of some hydrous REE phosphates with implications for diagenesis and seawater concentrations,Geochim. Cosmochim. Acta 49, 2133–2139.

    Google Scholar 

  • Klinkhammer G., Elderfield H. and Hudson A. (1983) Rare earth elements in seawater near hydrothermal vents,Nature 305, 185–188.

    Google Scholar 

  • Koeppenkastrop D. and De Carlo E. H. (1993) Uptake of rare earth elements from solution by metal oxides,Environ. Sci. Technol. 27, 1796–1802.

    Google Scholar 

  • Kreamer D. K., Hodge V. F., Rabinowitz I., Johannesson K. H. and Stetzenbach K. J. (in press) Trace element geochemistry in water from selected springs in Death Valley National Park, California,Ground Water.

  • Lee J. H. and Byrne R. H. (1992) Examination of comparative rare earth element complexation behavior using linear free-energy relationships,Geochim. Cosmochim. Acta 56, 1127–1137.

    Google Scholar 

  • Lee J. H. and Byrne R. H. (1993) Complexation of the trivalent rare earth elements (Ce, Eu, Gd, Tb, Yb) by carbonate ions,Geochim. Cosmochim. Acta 57, 295–302.

    Google Scholar 

  • Millero F. J. (1992) Stability constants for the formation of rare earth inorganic complexes as a function of ionic strength,Geochim. Cosmochim. Acta 56, 3123–3132.

    Google Scholar 

  • Millero F. J. and Schreiber D. R. (1982) Use of the ion pairing model to estimate activity coefficients of the ionic components of natural waters,Am. J. Sci. 282, 1508–1540.

    Google Scholar 

  • Möller P. and Bau M. (1993) Rare-earth patterns with positive cerium anomaly in alkaline lake waters from Lake Van, Turkey,Earth Planet. Sci. Lett. 117, 671–676.

    Google Scholar 

  • Nitsche H., Müller A., Standifer E. M., Deihammer R. S., Becraft K., Prussin T. and Gatti R. C. (1992) Dependence of actinide solubility and speciation on carbonate concentration and ionic strength in groundwater,Radiochim. Acta 58/59, 27–32.

    Google Scholar 

  • Parkhurst D. L., Thorstenson D. C., and Plummer L. N. (1980) PHREEQE — A computer program for geochemical calculations,U. S. Geol. Surv. Water Resour. Invest. Rep. 80–96.

  • Phillips K. N. and Van Denburgh A. S. (1971) Hydrology and geochemistry of Abert, Summer, and Goose Lakes, and other closed basin lakes in south-central Oregon.U. S. Geol. Surv. Prof. Pap. 502-B.

  • Pitzer K. S. (1973) Thermodynamics of electrolytes. I. Theoretical basis and general equations,J. Phys. Chem. 77, 268–277.

    Google Scholar 

  • Pitzer K. S. (1979) Theory: Ion interaction approach, in:Activity Coefficients in Electrolyte Solutions (ed. R. M. Pytkowicz), Vol. I, CRC Press, pp. 157–208.

  • Pitzer K. S. and Mayorga G. (1973) Thermodynamics of electrolytes II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent,J. Phys. Chem. 77, 2300–2308.

    Google Scholar 

  • Plummer L. N., Parkhurst D. L., Fleming G. W. and Dunkle S. A. (1989) PHRQPITZ, a computer program for geochemical calculations in brines,U. S. Geol. Surv. Water-Resour. Investig., Rep.88–4153.

  • Rard J. A. (1990) Isopiestic determination of the osmotic and activity coefficients of aqueous Lu2(SO4)3 at 25 °C,J. Solution Chem. 19, 525–541.

    Google Scholar 

  • Smedley P. L. (1991) The geochemistry of rare earth elements in groundwater from the Carnmenellis area, southwest England,Geochim. Cosmochim. Acta 55, 2767–2779.

    Google Scholar 

  • Smith R. M. and Martell A. E. (1976)Critical Stability Constants, Volume 4, Inorganic Complexes, Plenum Press, New York.

    Google Scholar 

  • Stetzenbach K. J., Amano M., Kreamer D. K. and Hodge V.F. (1994) Testing the limits of ICP-MS determination of trace elements in groundwater at the parts-per-trillion level,Ground Water 32, 976–985.

    Google Scholar 

  • Tananaev I. V. and Vasil'eva V. P. (1963) Lanthanum phosphates,Russian J. Inorg. Chem. 8, 555–558.

    Google Scholar 

  • Turner D. R., Whitfield W. and Dickson A. G. (1981) The equilibrium speciation of dissolved components in freshwater and seawater at 25 °C and 1 atm pressure,Geochim. Cosmochim. Acta 45, 855–881.

    Google Scholar 

  • Winograd I. J. and Thordarson W. (1975) Hydrogeologic and hydrochemical framework, south-central Great Basin, Nevada-California, with special reference to the Nevada Test Site,U.S. Geol. Surv. Prof. Pap. 712-C.

  • Winograd I. J. and Pearson F. J. (1976) Major carbon 14 anomaly in a regional carbonate aquifer: Possible evidence for megascale channeling, south central Great Basin,Water Resour. Res. 12, 1125–1143.

    Google Scholar 

  • Wood S. A. (1990) The aqueous geochemistry of the rare-earth elements and yttrium. 1. Review of the available low-temperature data for inorganic complexes and inorganic REE speciation in natural water,Chem. Geol. 82, 159–186.

    Google Scholar 

  • Wood S. A. (1993) The aqueous geochemistry of the rare earth elements: Critical stability constants for complexes with simple carboxylic acids at 25 °C and 1 bar and their application to nuclear waste management,Engineer. Geol. 34, 229–259.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johannesson, K.H., Lyons, W.B., Stetzenbach, K.J. et al. The solubility control of rare earth elements in natural terrestrial waters and the significance of PO 3−4 and CO 2−3 in limiting dissolved rare earth concentrations: A review of recent information. Aquat Geochem 1, 157–173 (1995). https://doi.org/10.1007/BF00702889

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00702889

Key words

Navigation