Skip to main content
Log in

A discrete geometry: Speculations on a new framework for classical electrodynamics

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

An attempt is made to describe the basic principles of physics in terms of discrete partially ordered sets. Geometric ideas are introduced by means of an action at a distance formulation of classical electrodynamics. The speculations are in two main directions: (i) Gravity, one of the four elementary forces of nature, seems to be fundamentally different from the other three forces. Could it be that gravity can be explained as a natural consequence of the discrete structure? (ii) The problem of the observer in quantum mechanics continues to cause conceptual problems. Can quantum statistics be explained in terms of finite ensembles of possible partially ordered sets? The development is guided at all stages by reference to the simplest, and most well-established principles of physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bell, J. S. (1966). On the problem of hidden variables in quantum mechanics,Reviews of Modern Physics,38, 447.

    Google Scholar 

  • Cox, D. R., and Isham, V. (1980).Point Processes, Chapman and Hall.

  • Dicke, R. H. (1964).The Theoretical Significance of Experimental Relativity, Gordon and Breach.

  • Dirac, P. A. M. (1938). Classical theory and radiating electrons,Proceedings of the Royal London, Series A,167, 148.

    Google Scholar 

  • Einstein, A. (1956).The Meaning of Relativity, 5th ed., Princeton University Press.

  • Einstein, A., and Grommer, J. (1927). Allgemeine Relativitätstheorie und Bewegungsgesetz,Sitzungsberichte Preussische Akademie der Wissenschaften,2.

  • Einstein, A., Podolsky, B., and Rosen, N. (1935). Can quantum-mechanical discription of reality be considered complete?,Physical Review,2, 47.

    Google Scholar 

  • Eyges, L. (1972).The Classical Electromagnetic Field, Addison-Wesley.

  • Feynman, R. P. (1962).Quantum Electrodynamics, Benjamin.

  • Feynman, R. P., and Hibbs, A. R. (1965).Quantum Mechanics and Path Integrals, McGraw-Hill.

  • Feynman, R. P., Leighton, R. B., and Sands, M. (1965).The Feynman Lectures on Physics, Vol. III, Addison-Wesley.

  • Fokker, A. D. (1929). Ein Invarianter Variationssatz fur die Bewegung Meherer Elektrischer Massenteilchen,Zeitschrift für Physik,58, 386.

    Google Scholar 

  • Gauss, C. F. (1845). Letter to W. Weber (19 March, 1845), in C. F. Gauss,Werke, Vol. 5, p. 629.

  • Glimm, J., and Jaffe, A. (1981).Quantum Mechanics: A Functional Integral Point of View, Springer-Verlag.

  • Gödel, K. (1949). An example of a new type of cosmological solutions of Einstein's field equations of gravitation,Reviews of Modern Physics,21, 447.

    Google Scholar 

  • Hawking, S. W., and Ellis, G. F. R. (1973).The Large Scale Structure of Space-Time, Cambridge University Press.

  • Hogarth, J. E. (1962). Cosmological considerations of the absorber theory of radiation,Proceedings of the Royal Society of London, Series A,267, 365.

    Google Scholar 

  • Hoyle, F., and Narlikar, J. V. (1974).Action at a Distance in Physics and Cosmology, Freeman.

  • Jammer, M. (1974).The Philosophy of Quantum Mechanics, Wiley.

  • Jauch, J. M. (1968).Foundations of Quantum Mechanics, Addison-Wesley.

  • Landé, A. (1965).New Foundations of Quantum Mechanics, Cambridge University Press.

  • Llosa, J., ed. (1981).Relativistic Action at a Distance: Classical and Quantum Aspects, Springer-Verlag.

  • Mattuck, R. D. (1976).A Guide to Feynman Diagrams in the Many-Body Problem, McGraw-Hill.

  • Messiah, A. (1970).Quantum Mechanics, North-Holland.

  • Narlikar, J. V. (1978).Lectures on General Relativity and Cosmology, Macmillan.

  • Nelson, E. (1967).Dynamical Theories of Brownian Motion, Princeton University Press.

  • Rebbi, C. (1982). Lattice gauge theories and Monte Carlo simulations, inNon-Perturbative Aspects of Quantum Field Theory, World Scientific, Singapore.

    Google Scholar 

  • Roe, P. E. (1969). Time-symmetric electrodynamics in Friedmann universes,Monthly Notices of the Royal Astronomical Society,144, 219.

    Google Scholar 

  • Schupp, P. A., ed. (1949).Albert Einstein, Philosopher-Scientist, Library of Living Philosophers.

  • Schrödinger, E. (1953). The meaning of wave mechanics, inLouis de Broglie Physicien et Penseur, A. George, ed., Albin Michel.

  • Segal, I. E. (1976).Mathematical Cosmology and Extragalactic Astronomy, Academic Press.

  • Von Neumann, J. (1955).Mathematical Foundations of Quantum Mechanics, Princeton University Press.

  • Wells, R. O. (1976). Complex manifolds and mathematical physics,Bulletin (NS)of the American Mathematical Society,1, 296.

    Google Scholar 

  • Wheeler, J. A., and Feynman, R. P. (1945). Interaction with the absorber as the mechanism of radiation,Reviews of Modern Physics,17, 157.

    Google Scholar 

  • Wheeler, J. A., and Feynman, R. P. (1949). Classical electrodynamics in terms of direct interparticle action,Reviews of Modern Physics,21, 425.

    Google Scholar 

  • Yilmaz, H. (1965).Introduction to the Theory of Relativity and the Principles of Modern Physics, Blaisdell.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemion, G. A discrete geometry: Speculations on a new framework for classical electrodynamics. Int J Theor Phys 27, 1145–1255 (1988). https://doi.org/10.1007/BF00670680

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00670680

Keywords

Navigation