Skip to main content
Log in

Supramolecular chemistry — Scope and perspectives: Molecules — Supermolecules — Molecular devices

  • Nobel Lecture, 8 December 1987
  • Published:
Journal of inclusion phenomena Aims and scope Submit manuscript

Abstract

Supramolecular chemistry is the chemistry of the intermolecular bond, covering the structures and functions of the entities formed by association of two or more chemical species. Molecular recognition in the supermolecules formed by receptor-substrate binding rests on the principles of molecular complementarity, as found in spherical and tetrahedral recognition, linear recognition by co-receptors, metallo-receptors, amphilic receptors and anion coordination. Supramolecular catalysis by receptors bearing reactive groups effects bond cleavage reactions as well as synthetic bond formation via co-catalysis. Lipophilic receptor molecules act as selective carriers for various substrates and allow the setting up of coupled transport processes linked to electron and proton gradients or to light. Whereas endo-receptors bind substrates in molecular cavities by convergent interactions, exo-receptors rely on interactions between the surfaces of the receptor and the substrate; thus new types of receptors such as the metallonucleates may be designed. In combination with polymolecular assemblies, receptors, carriers and catalysts may lead to molecular and supramolecular devices, defined as structurally organized and functionally integrated chemical systems built on supramolecular architectures. Their recognition, transfer and transformation features are analyzed specifically from the point of view of molecular devices that would operate via photons, electrons or ions, thus defining the fields of molecular photonics, electronics and ionics. Introduction of photosensitive groups yields photoactive receptors for the design of light conversion and charge separation centres. Redox active polyolefinic chains represent molecular wires for electron transfer through membranes. Tubular mesophases formed by stacking of suitable macrocyclic receptors may lead to ion channels. Molecular self-assembling occurs with acyclic ligands that form complexes with a double helical structure. Such developments in molecular and supramolecular design and engineering open perspectives towards the realization of molecular photonic, electronic and ionic devices, that would perform highly selective recognition, reaction and transfer operations for signal and information processing at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-M. Lehn:Struct. Bonding (Berlin)16, 1 (1973).

    Google Scholar 

  2. J.-M. Lehn:Pure Appl. Chem. 50, 871 (1978).

    Google Scholar 

  3. J.-M. Lehn: Leçon Inaugurale, Collège de France, Paris 1980.

    Google Scholar 

  4. R. Pfeiffer:Organische Molekülerverbindungen, Stuttgart, 1927.

  5. K. L. Wolf, F. Frahm and H. Harms:Z. Phys. Chem. Abt. B 36, 17 (1937); K. L. Wolf, H. Dunken and K. Merked: ibid.Z. Phys. Chem. Abt. B 46, 287 (1940); K. L. Wolf and R. Wolff:Angew. Chem. 61, 191 (1949).

    Google Scholar 

  6. J.-M. Lehn:Acc. Chem. Res. 11, 49 (1978).

    Google Scholar 

  7. J.-M. Lehn: in Z. I. Yoshida and N. Ise (Eds.):Biomimetic Chemistry, Kodansha, Tokyo and Elsevier, Amsterdam 1983, p. 163.

    Google Scholar 

  8. J.-M. Lehn:Science 277, 849 (1985).

    Google Scholar 

  9. P. G. Potvin and J.-M. Lehn: in R. M. Izatt and J. J. Christensen (Eds.):Synthesis of Macrocycles: The Design of Selective Complexing Agents (Progress in Macrocyclic Chemistry vol. 3), Wiley, New York, 1987, p. 167.

    Google Scholar 

  10. E. Fischer:Ber. Deutsch. Chem. Gesell. 27, 2985 (1894).

    Google Scholar 

  11. F. Cramer and W. Freist:Acc. Chem. Res. 20, 79 (1987).

    Google Scholar 

  12. J. F. Stoddart:Chem. Soc. Rev. 8, 85 (1979);Annual Reports B, Roy. Soc. Chem. (1983) p. 353.

    Google Scholar 

  13. D. J. Cram and J. M. Cram:Acc. Chem. Res. 11, 8 (1978).

    Google Scholar 

  14. R. C. Hayward:Chem. Soc. Rev. 12, 285 (1983).

    Google Scholar 

  15. I. O. Sutherland:Chem. Soc. Rev. 15, 63 (1986).

    Google Scholar 

  16. G. van Binst (Ed.):Design and Synthesis of Organic Molecules Based on Molecular Recognition, Springer, Berlin 1986.

    Google Scholar 

  17. J. Rebek, Jr.:Acc. Chem. Res. 17, 258 (1984)

    Google Scholar 

  18. J. Rebek, Jr.:Science 235, 1478 (1987).

    Google Scholar 

  19. P. B. Dervan, R. S. Youngquist and J. P. Sluka: in W. Bartmann and K. B. Sharpless (Eds.)Stereochemistry of Organic and Bioorganic Transformations, Verlag Chemie, Heidelberg 1987, p. 221

    Google Scholar 

  20. W. C. Still:ibid., Verlag Chemie, Heidelberg 1987, p. 235.

    Google Scholar 

  21. R. M. Izatt, J. J. Christensen (Eds.):Progress in Macrocyclic Chemistry, Wiley, New York, vol. 1 (1979), vol. 2 (1981), vol. 3 (1987).

    Google Scholar 

  22. F. Vögtle (Ed.):Host Guest Chemistry (Topics Curr. Chem. 98) (1981),101 (1982); F. Vögtle and E. Weber (Eds.),ibid.,Host Guest Chemistry (Topics Curr. Chem. 121 (1984).

  23. J. L. Atwood, J. E. D. Davies and D. D. MacNicol:Inclusion Compounds, Academic Press, London, vols. 1, 2, 3 (1984).

    Google Scholar 

  24. G. Wipff, P. K. Kollman and J.-M. Lehn:J. Mol. Struct. 93, 153 (1983); G. Ranghino, S. Romano, J.-M. Lehn and G. Wipff:J. Am. Chem. Soc. 107, 7873 (1985); G. Wipff and P. Kollman:Nouv. J. Chim. 9, 457 (1985); ‘Structure and Dynamics of Macromolecules’, S. Lifson, M. Levitt (Eds.)Isr. J. Chem. 27 (1986) No. 2.

    Google Scholar 

  25. An idea about the respective role of collection and orientation may be gained from examining the energies calculated for a series of Li(NH3) n+ complexes and of the corresponding (NH3) n units in the indentical geometry. In the presence of Li+ the formation energies of the complexes are obtained at the optimized Li+ ... NH3 distances. When Li+ is removed and the NH3 molecules are kept at the same position the energies calculated are for the formation of the coordination shell alone. These energies represent the repulsion between the NH3 groups; they are a measure of the intersite repulsive energy for bringing together two, three or four amine binding sites into a polydentate ligand of the same coordination geometry.Results, (NH3) n , geometry (repulsive energy, kcal/mole): (NH3)2, linear (−2.4), bent (−3.8); (NH3)3, trigonal (−9.1), pyramidal (−10.8); (NH3)4, tetrahedral (−20.8). Thus, the total collection energies are appreciably larger than the organization energies represented by the changes from one geometry to another, linear to bent (1.4 kcal/mole) or trigonal to pyramidal (1.7 kcal/mole).Ab initio computations performed with a set of Gaussian type basis functions, contracted into a double set with polarisation; J.-M. Lehn, R. Ventavoli, unpublished results; see also: R. Ventavoli, 3è Cycle Thesis, Université Louis Pasteur, Strasbourg, 1972.

  26. Yu. A. Ovchinnikov, V. T. Ivanov and A. M. Skrob:Membrane Active Complexones, Elsevier, New York (1974)

    Google Scholar 

  27. B. C. Pressman:Ann. Rev. Biochem. 45, 501 (1976)

    Google Scholar 

  28. H. Brockmann and H. Gerren:Annalen 603, 217 (1957)

    Google Scholar 

  29. M. M. Shemyakin, N. A. Aldanova, E. I. Vinogradova and M. Yu. Feigina,Tetrahedron Lett. 1963, 1921

  30. C. Moore and B. C. Pressman:Biochem. Biophys. Res. Commun. 15, 562 (1964)

    Google Scholar 

  31. B. C. Pressman:Proc. Natl. Acad. Sci. USA 53, 1077 (1965)

    Google Scholar 

  32. J. Beck, H. Gerlach, V. Prelog and W. Voser:Helv. Chim. Acta 74, 620 (1962)

    Google Scholar 

  33. Z. Stefanac and W. Simon:Chimia 20, 436 (1966) andMicrochem. J. 12, 125 (1967)

    Google Scholar 

  34. K. T. Kilbourn, J. D. Dunitz, L. A. R. Pioda and W. Simon:J. Mol. Biol. 30, 559 (1967)

    Google Scholar 

  35. P. Mueller and D. O. Rudin:Biochem. Biophys. Res. Commun. 26, 398 (1967)

    Google Scholar 

  36. T. E. Andreoli, M. Tieffenberg and D. C. Tosteson:J. Gen. Biol. 50, 2527 (1967)

    Google Scholar 

  37. M. M. Shemyakin, Yu. A. Ovchinnikov, V. T. Ivanov, V. K. Antonov, A. M. Skrob, I. I. Mikhaleva, A. V. Evstratov and G. G. Malenkov:ibid. 29, 834 (1967)

    Google Scholar 

  38. B. C. Pressman, E. J. Harris, W. S. Jagger and J. H. Johnson:Proc. Natl. Acad. Sci. USA 58, 1949 (1967).

    Google Scholar 

  39. C. J. Pedersen:J. Am. Chem. Soc. 89, 7017 (1967)

    Google Scholar 

  40. C. J. Pedersen and H. K. Frensdorff:Agnew. Chem. Int. Ed. Engl. 11, 16 (1972).

    Google Scholar 

  41. D. J. Cram:Angew. Chem. Int. Ed. Engl. 25, 1039 (1986).

    Google Scholar 

  42. D. Parker:Adv. Inorg. Chem. Radiochem. 27, 1 (1983); B. Dietrich:J. Chem. Ed. 62, 954 (1985). For the sepulchrate type of encapsulated metal ions, see A. M. Sargeson:Pure Appl. Chem. 56, 1603 (1984).

    Google Scholar 

  43. J.-M. Lehn and J.-P. Sauvage:J. Am. Chem. Soc. 97, 6700 (1975)

    Google Scholar 

  44. B. Dietrich, J.-M. Lehn and J.-P. Sauvage:J. Chem. Soc., Chem. Commun. 1973, 15.

  45. B. Dietrich, J.-M. Lehn and J.-P. Sauvage:Tetrahedron Lett. 1969, 2885 and 2889

  46. B. Dietrich, J.-M. Lehn, J.-P. Sauvage and J. Blanzat, Tetrahedron29, 1629 (1973); B. Dietrich, J.-M. Lehn and J.-P. Sauvage:ibid. Tetrahedron29, 1647 (1973)

    Google Scholar 

  47. B. Metz, D. Moras and R. Weiss:J. Chem. Soc., Chem. Commun. 1970, 217; F. Mathieu, B. Metz, D. Moras and R. Weiss:J. Am. Chem. Soc. 100, 4412 (1978) and references therein.

  48. E. Graf and J.-M. Lehn:J. Am. Chem. Soc. 97, 5022 (1975);Helv. Chim. Acta 64, 1040 (1981).

    Google Scholar 

  49. B. Dietrich and J.-M. Lehn: unpublished results.

  50. E. Graf and J.-M. Lehn:J. Am. Chem. Soc. 98, 6403 (1976).

    Google Scholar 

  51. F. Schmidtchen and G. Muller:J. Chem. Soc., Chem. Commun. 1984, 11115.

  52. J. L. Dye:Angew. Chem. Int. Ed. Engl. 18, 587 (1979); J. L. Dye and M. G. DeBacker:Ann. Rev. Phys. Chem. 38, 271 (1987).

    Google Scholar 

  53. J.-M. Lehn:Pure Appl. Chem. 52, 2303 (1980).

    Google Scholar 

  54. A. I. Popov and J.-M. Lehn: in G. A. Melson (Ed.):Coordination Chemistry of Macrocyclic Compounds Plenum Press, New York, 1979.

    Google Scholar 

  55. I. M. Kolthoff:Anal. Chem. 51, 1R (1979).

    Google Scholar 

  56. F. Montanari, D. Landini and F. Rolla:Topics Curr. Chem. 101, 203 (1982); E. Blasius and K.-P. Janzen:ibid. Topics Curr. Chem. 98, 163 (1981).

    Google Scholar 

  57. E. Graf, J.-M. Lehn and J. LeMoigne:J. Am. Chem. Soc. 104, 1672 (1982).

    Google Scholar 

  58. E. Graf. J.-P. Kintzinger and J.-M. Lehn: unpublished results.

  59. B. Dietrich, J.-P. Kintzinger, J.-M. Lehn, B. Metz and A. Zahidi:J. Phys. Chem. in press.

  60. D. J. Cram and K. N. Trueblood:Topics Curr. Chem. 98, 43 (1981)

    Google Scholar 

  61. F. De Jong and D. N. Reinhoudt: in V. Gold and D. Bethell (Eds.):Adv. Phys. Org. Chem. 17, 219 (1980), Academic Press, New York.

    Google Scholar 

  62. J.-M. Lehn and P. Vierling:Tetrahedron Lett. 1980, 1323.

  63. J.-P. Behr, J.-M. Lehn and P. Vierling:J. Chem. Soc., Chem. Commun. 1976, 621;Helv. Chim. Acta 65, 1853 (1982).

  64. J.-P. Behr and J.-M. Lehn:Helv. Chim. Acta 63, 2112 (1980).

    Google Scholar 

  65. H. M. Colquhoun, J. F. Stoddart and D. J. Williams:Angew. Chem. Int. Ed. Engl. 25, 487 (1986).

    Google Scholar 

  66. Stability constants of about 800 and 105 L mol−1 have been obtained for binding of Ru(NH3) 63+ to12b and to the hexacarboxylate in14, respectively (aqueous solution, pH=7.3); J.-M. Lehn and P. Vierling, unpublished results.

  67. J. C. Metcalfe, J. F. Stoddart and G. Jones:J. Am. Chem. Soc. 99, 8317 (1977); J. Krane and O. Aune:Acta Chem. Scand. B34, 397 (1980).

    Google Scholar 

  68. J.-M. Lehn, P. Vierling and R. C. Hayward:J. Chem. Soc., Chem. Commun. 1979, 296

  69. see also: K. Madan and D. J. Cram:ibid. J. Chem. Soc., Chem. Commun. 1975, 427; J. W. H. M. Uiterwijk, S. Harkema, J. Geevers and D. N. Reinhoudt:ibid J. Chem. Soc., Chem. Commun. 1982, 200.

  70. F. Vögtle, H. Sieger and W. M. Muller:Topics Curr. Chem. 98, 107 (1981)

    Google Scholar 

  71. K. Saigo:Kagaku to Kygyo 35, 90 (1982)

    Google Scholar 

  72. J.-L. Pierre and P. Baret:Bull. Soc. Chim. Fr. II 1983, 367

    Google Scholar 

  73. E. Kimura:Topics Curr. Chem. 128, 113 (1985)

    Google Scholar 

  74. F. P. Schmidtchen:ibid. 132, 101 (1986).

    Google Scholar 

  75. J.-M. Lehn, E. Sonveaux and A. K. Willard:J. Am. Chem. Soc. 100, 4914 (1978)

    Google Scholar 

  76. B. Dietrich, J. Guilhem, J.-M. Lehn, C. Pascard and E. Sonveaux:Helv. Chim. Acta 67, 91 (1984)

    Google Scholar 

  77. for other macrobicyclic receptors see also M. W. Hosseini, Thèse de Doctorat-ès-Sciences, Université Louis Pasteur, Strasbourg 1983.

  78. C. H. Park and H. Simmons:J. Am. Chem. Soc. 90, 2431 (1968).

    Google Scholar 

  79. B. Dietrich, M. W. Hosseini, J.-M. Lehn and R. B. Sessions:J. Am. Chem. Soc. 103, 1282 (1981)

    Google Scholar 

  80. B. Dietrich, M. W. Hosseini, J.-M. Lehn and R. B. Sessions:Helv. Chim. Acta 68, 289 (1985).

    Google Scholar 

  81. J. Cullinane, R. I. Gelb, T. N. Margulis and L. J. Zompa:J. Am. Chem. Soc. 104, 3048 (1982); E. Suet and H. Handel:Tetrahedron Lett. 1984, 645.

    Google Scholar 

  82. M. W. Hosseini, J.-M. Lehn and M. P. Mertes:Helv. Chim. Acta 66, 2454 (1983).

    Google Scholar 

  83. E. Kimura, M. Kodama and T. Yatsunami:J. Am. Chem. Soc. 104, 3182 (1982); J. F. Marecek and C. J. Burrows:Tetrahedron Lett. 1986, 5943.

    Google Scholar 

  84. M. W. Hosseini and J.-M. Lehn:Helv. Chim. Acta 70, 1312 (1987); see also H. R. Wilson and R. J. P. Williams:J. Chem. Soc., Faraday Trans. I 83, 1885 (1987).

    Google Scholar 

  85. B. Dietrich, D. L. Fyles, T. M. Fyles and J.-M. Lehn:Helv. Chim. Acta 62, 2763 (1979).

    Google Scholar 

  86. B. Dietrich, T. M. Fyles, J.-M. Lehn, L. G. Pease and D. L. Fyles:J. Chem. Soc., Chem. Commun. 1978, 934.

  87. M. J. Mann, N. Pant and A. D. Hamilton:J. Chem. Soc., Chem. Commun. 1986, 158.

  88. F. Peter, M. Gross, M. W. Hosseini and J.-M. Lehn:J. Electroanal. Chem. 144, 279 (1983).

    Google Scholar 

  89. E. Garcia-Espana, M. Micheloni, P. Paoletti and A. Bianchi:Inorg. Chim. Acta 102, L9 (1985); A. Bianchi, E. Garcia-Espana, S. Mangani, M. Micheloni, P. Orioli and P. Paoletti:J. Chem. Soc., Chem. Commun. 1987, 729.

    Google Scholar 

  90. M. F. Manfrin, L. Moggi, V. Castelvetro, V. Balzani, N. W. Hosseini and J.-M. Lehn:J. Am. Chem. Soc. 107, 6888 (1985).

    Google Scholar 

  91. J.-M. Lehn:Pure Appl. Chem. 52, 2441 (1980).

    Google Scholar 

  92. J.-M. Lehn, J. Simon and J. Wagner:Angew. Chem. Int. Ed. Engl. 12, 578, 579 (1973).

    Google Scholar 

  93. R. J. Motekaitis, A. E. Martell, B. Dietrich and J.-M. Lehn:Inorg. Chem. 23, 1588 (1984); R. J. Motekaitis, A. E. Martell and I. Murase:ibid. Inorg. Chem. 25, 938 (1986); A. Evers, R. D. Hancock and I. Murase:ibid. Inorg. Chem. 25, 2160 (1986); D. E. Whitmoyer, D. P. Rillema and G. Gerraudi:J. Chem. Soc., Chem. Commun. 1986, 677.

    Google Scholar 

  94. J.-P. Kintzinger, J.-M. Lehn, E. Kauffmann, J. L. Dye and A. I. Popov:J. Am. Chem. Soc. 105, 7549 (1983).

    Google Scholar 

  95. D. Heyer and J.-M. Lehn:Tetrahedron Lett. 1986, 5869.

  96. T. Fujita and J.-M. Lehn: unpublished work.

  97. T. P. Lybrand, J. A. McCammon and G. Wipff:Proc. Natl. Acad. Sci. USA 83, 833 (1986).

    Google Scholar 

  98. J.-M. Lehn: in K. J. Laidler (Ed.):IUPAC Frontiers of Chemistry, Pergamon Press, Oxford 1982, p. 265.

    Google Scholar 

  99. J. Jazwinski, J.-M. Lehn, D. Lilienbaum, R. Ziessel, J. Guilhem and C. Pascard:J. Chem. Soc., Chem. Commun. 1987, 1691.

  100. A. Carroy and J.-M. Lehn:J. Chem. Soc., Chem. Commun. 1986, 1232.

  101. J. Comarmond, B. Dietrich, J.-M. Lehn and R. Louis:J. Chem. Soc., Chem. Commun. 1985, 74.

  102. Y. Okuno, K. Uoto, O. Yonemitsu and T. Tomohiro:J. Chem. Soc. Chem. Commun. 1987, 1018; J. R. Holmes and J.-M. Lehn: work in progress.

  103. F. Kotzyba-Hibert, J.-M. Lehn and P. Vierling:Tetrahedron Lett. 1980, 941.

  104. F. Kotzyba-Hibert, J.-M. Lehn and K. Saigo:J. Am. Chem. Soc. 103, 4266 (1981).

    Google Scholar 

  105. C. Pascard, C. Riche, M. Cesario, F. Kotzyba-Hibert and J.-M. Lehn:J. Chem. Soc., Chem. Commun. 1982, 557.

  106. J.-P. Kintzinger, F. Kotzyba-Hibert, J.-M. Lehn, A. Pagelot and K. Saigo:J. Chem. Soc., Chem. Commun. 1981, 833.

  107. M. W. Hosseini and J.-M. Lehn:J. Am. Chem. Soc. 104, 3525 (1982);Helv. Chim. Acta 69, 587 (1986).

    Google Scholar 

  108. F. P. Schmidtchen:J. Am. Chem. Soc. 108, 8249 (1986);

    Google Scholar 

  109. J. Rebek, Jr. D. Nemeth, P. Ballester and F.-T. Lin:ibid. 109, 3474 (1987).

    Google Scholar 

  110. J.-M. Lehn, J. Simon and A. Moradpour:Helv. Chim. Acta 61, 2407 (1978).

    Google Scholar 

  111. F. P. Schmidtchen:J. Org. Chem. 51, 5161 (1986);

    Google Scholar 

  112. J. Simon: Thèse de Doctorat d'Etat, Université Louis Pasteur, Strasbourg 1976; see also structure28 in ref. [14] p. 305

  113. J. Rebek, Jr., B. Askew, O. Nemeth and K. Parris:J. Am. Chem. Soc. 109, 2432 (1987).

    Google Scholar 

  114. J.-P. Behr and J.-M. Lehn:J. Am. Chem. Soc. 98, 1743 (1976).

    Google Scholar 

  115. F. Cramer:Einschlussverbindungen, Springer Verlag, Berlin 1954; M. L. Bender and M. Komiyama:Cyclodextrin Chemistry, Springer Verlag, Berlin 1978.

    Google Scholar 

  116. J. Franke and F. Vögtle:Topics Curr. Chem. 132, 137 (1986);

    Google Scholar 

  117. F. Vögtle, W. M. Müller and W. H. Watson:ibid 125, 131 (1984);

    Google Scholar 

  118. for calixarenes, see C. D. Gutsche:ibid 123, 1 (1984);Acc. Chem. Res. 16. 161 (1983);

    Google Scholar 

  119. for cavitands, see, D. J. Cram:Science 219, 1177 (1983).

    Google Scholar 

  120. J. Canceill, A. Collet, J. Gabard, F. Kotzyba-Hibert and J.-M. Lehn:Helv. Chim. Acta 65, 1894 (1982).

    Google Scholar 

  121. M. Dhaenens, L. Lacombe, J.-M. Lehn and J.-P. Vigneron:J. Chem. Soc., Chem. Commun. 1984, 1097.

  122. H.-J. Schneider, D. Guttes, and U. Schneider:Angew. Chem. Int. Ed. Engl. 25, 647 (1986).

    Google Scholar 

  123. B. L. Atwood, F. H. Kohnke, J. F. Stoddart and D. J. Williams:Angew. Chem. Int. Ed. Engl. 24, 581 (1985).

    Google Scholar 

  124. For dissymmetric cylindrical macrotricyclic co-receptors that bind ammonium ions, see A. D. Hamilton and P. Kazanjian:Tetrahedron Lett. 1985, 5735; K. Saigo, R.-J. Lin, M. Kubo, A. Youda and M. Hasegawa:Chem. Lett. 1986, 519.

  125. For macrocyclic cyclophane type receptors see also K. Odashima, T. Soga and K. Koga:Tetrahedron Lett. 1980, 5311; F. Diederich and K. Dick:ibid.Tetrahedron Lett. 106, 8024 (1984) and references therein.

  126. A. J. Blacker, J. Jazwinski and J.-M. Lehn:Helv. Chim. Acta 70, 1 (1987).

    Google Scholar 

  127. I. Bidd, B. Dilworth and J.-M. Lehn: unpublished work.

  128. J. Jazwinski, A. J. Blacker, J.-M. Lehn, M. Cesario, J. Guilhem and C. Pascard:Tetrahedron Lett. 1987, in press.

  129. J.-M. Lehn, F. Schmidt and J.-P. Vigneron: work in progress.

  130. A. J. Blacker, M. W. Hosseini and J.-M. Lehn: unpublished work.

  131. (a)J.-P. Behr and J.-M. Lehn: unpublished work;

  132. J.-M. Lehn and I. Stibor: work in progress

  133. for recent examples see J. Rebek, Jr., B. Askew, P. Ballester, C. Buhr, S. Jones, D. Nemeth and K., Williams:J. Am. Chem. Soc. 109, 5033 (1987); A. D. Hamilton and D. Van Engen:ibid.J. Am. Chem. Soc. 109, 5035 (1987).

    Google Scholar 

  134. J. Canceill, M. Cesario, A. Collet, C. Riche and C. Pascard:J. Chem. Soc., Chem. Commun. 1986, 339; J. Canceill, L. Lacombe and A. Collet:C.R. Acad. Sc. Paris 304, II, 815 (1987).

  135. A. D. Hamilton, J.-M. Lehn and J. L. Sessler:J. Chem. Soc., Chem. Commun. 1984, 311;J. Am. Chem. Soc. 108, 5158 (1986).

  136. For other metalloreceptor type species see for instance references in [15]; N. M. Richards, I. O. Sutherland, P. Camilleri and J. A. Pape:Tetrahedron Lett. 1985, 3739; M. C. Gonzalez and A. C. Weedon:Can. J. Chem. 63, 602 (1985); D. H. Busch and C. Cairns, in [9] p. 1; V. Thanabal and V. Krishnan:J. Am. Chem. Soc. 104, 3643 (1982); G. B. Maiya and V. Krishnan:Inorg. Chem. 24, 3253 (1985).

  137. R. Breslow:Science 218, 532 (1982) and in ref. [21] vol. 3, p. 473;

    Google Scholar 

  138. R. M. Kellogg:Topics Curr. Chem. 101, 111 (1982);

    Google Scholar 

  139. I. Tabushi and K. Yamamura:ibid. 113, 145 (1983);

    Google Scholar 

  140. Y. Murakami:ibid. 115, 107 (1983);

    Google Scholar 

  141. C. Sirlin:Bull. Soc. Chim. France II, 5 (1984);

    Google Scholar 

  142. R. M. Kellogg:Angew. Chem. Int. Ed. Engl. 23, 782 (1984);

    Google Scholar 

  143. V. T. D'Souza and M. Bender:Acc. Chem. Res. 20, 146 (1987).

    Google Scholar 

  144. J.-M. Lehn:Pure Appl. Chem. 51, 979 (1979);Ann. N.Y. Acad. Sci. 471, 41 (1986).

    Google Scholar 

  145. Y. Chao, G. R. Weisman G. D. Y. Sogah and D. J. Cram:J. Am. Chem. Soc. 101, 4948 (1979).

    Google Scholar 

  146. J.-M. Lehn and C. Sirlin:J. Chem. Soc., Chem. Commun. 1978, 949;Nouv. J. Chim. 11, 693 (1987).

  147. S. Sasaki and K. Koga:Heterocycles 12, 1305 (1979).

    Google Scholar 

  148. J.-P. Behr and J.-M. Lehn:J. Chem. Soc., Chem. Commun. 1978, 143.

  149. J.-M. Lehn and T. Nishiya:Chem. Lett. 1987, 215.

  150. M. W. Hosseini, J.-M. Lehn and M. P. Mertes:Helv. Chim. Acta 66, 2454 (1983); M. W. Hosseini, J.-M. Lehn, L. Maggiora, K. B. Mertes and M. P. Mertes:J. Am. Chem. Soc. 109, 537 (1987).

    Google Scholar 

  151. G. M. Blackburn, G. R. J. Thatcher, M. W. Hosseini and J.-M. Lehn:Tetrahedron Lett. 1987, 2779.

  152. M. W. Hosseini and J.-M. Lehn:J. Chem. Soc., Chem. Commun. 1985, 1155;J. Am. Chem. Soc. 109, 7047 (1987).

  153. P. G. Yohannes, M. P. Mertes and K. B. Mertes:J. Am. Chem. Soc. 107, 8288 (1985).

    Google Scholar 

  154. S. Sasaki, M. Shionoya and K. Koga,J. Am. Chem. Soc. 107, 3371 (1985).

    Google Scholar 

  155. H.-D. Lutter and F. Diederich:Angew. Chem. Int. Ed. Engl. 25, 1125 (1986).

    Google Scholar 

  156. F. M. Menger and M. Ladika:J. Am. Chem. Soc. 109, 3145 (1987).

    Google Scholar 

  157. E. T. Kaiser and D. S. Lawrence:Science 226, 505 (1984).

    Google Scholar 

  158. See, for instance, J. A. Gerlt:Chem. Rev. 87, 1079 (1987); A. J. Russell and A. R. Fersht:Nature 328, 496 (1987).

    Google Scholar 

  159. A. Tramontano, K. D. Janda and R. A. Lerner:Science 234, 1566 (1986); S. J. Pollack, J. W. Jacobs and P. G. Schultz:ibid.Science 234, 1570 (1986); R. A. Lerner and A. Tramontano:TIBS 12, 427 (1987).

    Google Scholar 

  160. B. Dietrich, J.-M. Lehn and J.-P. Sauvage:Tetrahedron Lett. 1969, 2889.

  161. J.-M. Lehn: in G. Spach (Ed.),Physical Chemistry of Transmembrame Ion Motions, Elsevier, Amsterdam, 1983, p. 181.

    Google Scholar 

  162. W. Simon, W. E. Morf and P. Ch. Meier:Structure and Bonding 16, 113 (1973); W. E. Morf, D. Amman, R. Bissig, E. Prestsch and W. Simon, in ref. [19], vol. 1, p. 1.

    Google Scholar 

  163. J.-P. Behr and J.-M. Lehn:J. Am. Chem. Soc. 95, 6108 (1973).

    Google Scholar 

  164. B. C. Pressman:Ann. Rev. Biochem. 45, 501 (1976).

    Google Scholar 

  165. J. D. Lamb and J. J. Christensen: in ref. [21] vol 3, p. 571.

  166. M. Kirch and J.-M. Lehn:Angew. Chem. Int. Ed. Engl. 14, 555 (1975); M. Kirsch: Thèse de Doctorat-ès-Sciences, Université Louis Pasteur, Strasbourg, 1980.

    Google Scholar 

  167. J.-P. Behr, M. Kirch and J.-M. Lehn:J. Am. Chem. Soc. 107, 241 (1985).

    Google Scholar 

  168. T. M. Fyles:Can. J. Chem. 65, 884 (1987).

    Google Scholar 

  169. M. Castaing, F. Morel and J.-M. Lehn:J. Membrane Biol. 89, 251 (1986); M. Castaing and J.-M. Lehn:ibid. J. Membrane Biol. 97, 79 (1987).

    Google Scholar 

  170. E. Bacon, L. Jung and J.-M. Lehn:J. Chem. Res. (S) 1980, 136.

  171. H. Tsukube:Angew. Chem. Int. Ed. Engl. 21, 304 (1982).

    Google Scholar 

  172. Anion transport with anion cryptands has been observed recently: T. M. Fyles and J.-M. Lehn, unpublished results.

  173. F. Diederich and K. Dick:J. Am. Chem. Soc.,106, 8024, (1984); A. Harada and S. Takahashi:J. Chem. Soc., Chem. Commun. 1987, 527.

    Google Scholar 

  174. J. J. Grimldi and J.-M. Lehn:J. Am. Chem. Soc. 101, 1333 (1979).

    Google Scholar 

  175. S. S. Anderson, I. G. Lyle and R. Paterson:Nature 259, 147 (1976).

    Google Scholar 

  176. J. J. Grimaldi, S. Boileau and J.-M. Lehn.Nature 265, 229 (1977).

    Google Scholar 

  177. J. K. Hurst and D. H. P. Thompson: J. Membrane Sci.28 (1986) and references therein; I. Tabushi and S.-i. Kugimiya:Tetrahedron Lett. 1984, 3723.

  178. M. Okahara and Y. Nakatsuji:Topics Curr. Chem. 128, 37 (1985).

    Google Scholar 

  179. A. Hriciga and J.-M. Lehn:Proc. Natl. Acad. Sci. USA 80, 6426 (1983).

    Google Scholar 

  180. R. Frank and H. Rau:Z. Naturforsch. 37A, 1253 (1982).

    Google Scholar 

  181. I. Tabushi and S.-i. Kugimiya.J. Am. Chem. Soc. 107, 1859 (1985).

    Google Scholar 

  182. S. Shinkai and O. Manabe:Topics Curr Chem. 121, 67 (1984).

    Google Scholar 

  183. D. W. Urry:Topics Curr. Chem. 128, 175 (1985).

    Google Scholar 

  184. R. Nagaraj and P. Balaram:Acc. Chem. Res. 14, 356 (1981); R. O. Fox, Jr. and F. M. Richards:Nature 300, 325 (1982).

    Google Scholar 

  185. J.-P. Behr, J.-M. Lehn, A.-C. Dock and D. Moras:Nature 295, 526 (1982).

    Google Scholar 

  186. U. F. Kragten, M. F. M. Roks and R. J. M. Nolte:J. Chem. Soc., Chem. Commun. 1985, 1275.

  187. I. Tabushi, Y. Kuroda and K. Yokota:Tetrahedron Lett. 1982, 4601.

  188. J.-H. Fuhrhop and U. Liman:J. Am. Chem. Soc. 106, 4643 (1984).

    Google Scholar 

  189. J.-H. Fufrhop, U. Liman and H. H. David:Angew. Chem. Int. Ed. Engl. 24, 339 (1985).

    Google Scholar 

  190. J.-H. Lehn and J. Simon:Helv. Chim. Acta 60, 141 (1977).

    Google Scholar 

  191. J.-H. Lehn and M. E. Stubbs:J. Am. Chem. Soc. 96, 4011 (1974).

    Google Scholar 

  192. W. Fischer, J. Brickmann and P. Lauger:Biophys. Chem. 13, 105 (1981).

    Google Scholar 

  193. C. Etchebest, S. Ranganathan and A. Pullman:IEBS Letters 173, 301 (1984).

    Google Scholar 

  194. For an earlier use of the intersection sign, see: E. Kauffmann, J. L. Dye, J.-M. Lehn and A. I. Popov:J. Am. Chem. Soc. 102, 2274 (1980).

    Google Scholar 

  195. A. G. Amit, R. A. Mariuzza, S. E. V. Phillips and R. J. Poljak:Science 233, 747 (1986); H. M. Geysen, J. A. Tainer, S. J. Rodda, T. J. Mason, H. Alexander, E. D. Getzoff and R. A. Lerner;ibid. Science 235, 1184 (1987)

    Google Scholar 

  196. M. M. Harding and J.-M. Lehn: unpublished work.

  197. D. A. Tomalia, M. Hall and D. M. Hedstrand:J. Am. Chem. Soc. 109, 1601 (1987) and references therein.

    Google Scholar 

  198. G. R. Newkome, Z.-q. Yao, G. R. Baker, V. K. Gupta, P. S. Russo and M. J. Saunders:J. Am. Chem. Soc. 108, 849 (1986); G. R. Newkome, G. R. Baker, M. J. Saunders, P. S. Russo, V. K. Gupta, Z.-q. Yao, J. E. Miller and K. Bouillion:J. Chem. Soc., Chem. Commun. 1986, 752.

    Google Scholar 

  199. H. M. McConnell, L. K. Tamm and R. M. Weiss:Proc. Natl. Acad. Sci. USA 81, 3249 (1984): R. M. Weiss and H. M. McConnell:Nature 310, 47 (1984).

    Google Scholar 

  200. T. Kunitake, Y. Okahata, M. Shimomura, S.-i. Yasunami and K. Takarabe:J. Am. Chem. Soc. 103, 5401 (1981); N. Nakashima, S. Asakuma andT. Kunitake:ibid. J. Am. Chem. Soc. 107 (1985) 509.

    Google Scholar 

  201. J. H. Fendler:Membrane Mimetic Chemistry, Wiley, New York, 1982.

    Google Scholar 

  202. H. Kuhn and D. Moebius:Angew. Chem. Int. Ed. Engl. 10, 620 (1971).

    Google Scholar 

  203. D. Moebius:Acc. Chem. Res. 14, 63 (1981):Ber. Bunsenges Phys. Chem. 82, 848 (1978);Z. Physik. Chem. Neue Folge 154, 121 (1987).

    Google Scholar 

  204. J. A. Hayward (Ed.):New Technological Applications of Phospholipid Bilayers, Thin Films and Vesicles, Tenerife, January 6–9, 1986, Plenum Press.

  205. J. Sagiv: in [163]; L. Netzer and J. Sagiv:J. Am. Chem. Soc. 105, 674 (1983).

    Google Scholar 

  206. H.-H. Hub, B. Hupfer, H. Koch and H. Ringsdorf:Angew. Chem. Int. Ed. Engl. 19, 938 (1980); L. Gros, H. Ringsdorf and H. Schupp:ibid. Angew. Chem. Int. Ed. Engl. 20, 305 (1981).

    Google Scholar 

  207. G. Wegner:Chimia 36, 63 (1982); C. M. Paleos:Chem. Soc. Rev. 14, 45 (1985).

    Google Scholar 

  208. H. Kuhn:Pure Appl. Chem. 53, 2105 (1981).

    Google Scholar 

  209. J.-H. Fufrhop and J. Mathieu:Angew. Chem. Int. Ed. Engl. 23, 100 (1984);

    Google Scholar 

  210. J.-H. Fuhrhop and D. Fritsch:Acc. Chem. Res. 19, 130 (1986);

    Google Scholar 

  211. Y. Okahata:Acc. Chem. Res. 19, 57 (1986).

    Google Scholar 

  212. B. Balzani (Ed.):Supramolecular Photochemistry, D. Reidel Publ. Co., Dordrecht, Holland, 1987;

    Google Scholar 

  213. J.-M. Lehn: p. 29 therein.

  214. J.-C. Rodriguez-Ubis, B. Alpha, D. Plancherel and J.-M. Lehn:Helv. Chim. Acta 67, 2264 (1984).

    Google Scholar 

  215. B. Alpha, J.-M. Lehn and G. Mathis:Angew. Chem. Int. Ed. Engl. 26, 266 (1987); B. Alpha, V. Balzani, J.-M. Lehn, S. Perathoner and N. Sabbatini:Angew. Chem. Int. Ed. Engl. 26 (1987), in press; N. Sabbatini, S. Perathoner, V. Balzani, B. Alpha and J.-M. Lehn, in ref. [169a], p. 187.

    Google Scholar 

  216. H. Bouas-Laurent, A. Castellan and J.-P. Desvergne:Pure Appl. Chem. 52, 2633 (1980);

    Google Scholar 

  217. H. Bouas-Laurent, A. Castellan, M. Daney, J.-P. Desvergne, G. Guinand, P. Marsau and M.-H. Riffaud:J. Am. Chem. Soc. 108, 315 (1986).

    Google Scholar 

  218. J. P. Konopelski, F. Kotzyba-Hibert, J.-M. Lehn, J.-P. Desvergne, F. Fagès, A. Castellan and H. Bouas-Laurent:J. Chem. Soc., Chem. Commun. 1985, 433.

  219. D. F. Eaton:Tetrahedron 43, 1551 (1987) and references therein.

    Google Scholar 

  220. A. Guarino.J. Photochem. 35, 1 (1986).

    Google Scholar 

  221. M. Gubelmann, J.-M. Lehn, J. L. Sessler and A. Harriman: to be published.

  222. V. Balzani, N. Sabbatini and F. Scandola:Chem. Rev. 86, 319 (1986).

    Google Scholar 

  223. Photoactive units may photooxidise complexed substrates, [93] and effect DNA photocleavage: A. J. Blacker, J. Jazwinski, J.-M. Lehn and F.-X. Wilhelm:J. Chem. Soc., Chem. Commun. 1986, 1035.

  224. J.-M. Lehn, in D. S. Chemla and J. Zyss (Eds.):Non-Linear Optical Properties of Organic Molecules and Crystals, Academic Press, New York, vol. 1987, p. 215;

    Google Scholar 

  225. J. F. Nicoud and R. J. Twieg:ibidin D. S. Chemla and J. Zyss (Eds.):Non-Linear Optical Properties of Organic Molecules and Crystals, Academic Press, New York, vol. 1987, p. 221.

    Google Scholar 

  226. M. Takagi and K. Ueno:Topics Curr. Chem. 121, 39 (1984); H.-G. Lohr and F. Vögtle:Acc. Chem. Res. 18, 65 (1985); R. Klink, D. Boaart, J.-M. Lehn, B. Helfert and R. Bitsch: Merck GmbH, Eur. Patent Appl. 83100281.1 (14.01.1983).

    Google Scholar 

  227. R. C. Haddon and A. A. Lamola:Proc. Natl. Acad. Sci. USA 82, 1874 (1985); R. W. Munn:Chem. Br. 1984, 518; J. Simon, J.-J. André and A. Skoulios:Nouv. J. Chim. 10, 295 (1986); J. Simon, F. Tournilhac and J.-J. André:ibid Nouv. J. Chim. 11, 383 (1987) and references therein.

    Google Scholar 

  228. T. S. Arrhenius, M. Blanchard-Desce, M. Dvolaitzky, J.-M. Lehn and J. Malthete:Proc. Natl. Acad. Sci. USA 83 5355 (1986).

    Google Scholar 

  229. Biological effectors may also be sought: I. Tabushi, T. Nishiya, M. Shimomura, T. Kunitake, H. Inokuchi and T. Yagi:J. Am. Chem. Soc. 106, 219 (1984);

    Google Scholar 

  230. for other related work see for instance: J. K. Nagle, J. S. Bernstein, R. C. Young and T. J. Meyer:Inorg. Chem. 20, 1760 (1981); E. T. T. Jones, O. M. Chyan and M. S. Wrighton:J. Am. Chem. Soc. 109, 5526 (1987).

    Google Scholar 

  231. R. Schwyzer, A. Tun-Kyi, M. Caviezel and P. Moser:Helv. Chim. Acta 53, 15 (1970);Experientia 26, 577 (1970); see also ref. [1] p. 19.

    Google Scholar 

  232. S. Shinkai:Pure Appl. Chem. 59, 425 (1987);

    Google Scholar 

  233. D. A. Gustowski, M. Delgado, V. J. Gatto, L. Echegoyen and G. W. Gokel:J. Am. Chem. Soc. 108, 7553 (1986) and references therein.

    Google Scholar 

  234. J.-M. Lehn, J. Malthête and A.-M. Levelut:J. Chem. Soc., Chem. Commun. 1985, 1794.

  235. For phthalocyanine derived columnar mesophases see D. Masurel, C. Sirlin and J. Simon:New J. Chem. 11, 455 (1987) and references therein.

    Google Scholar 

  236. E. Carafoli and J. T. Penniston:Sci. Amer. November 50 (1985); T. Hiraoki and H. J. Vogel:J. Cardiovasc. Pharm. 10, (Suppl. 1), S14 (1987).

  237. I. Tabushi, S.-i. Kugimiya and T. SasakiJ. Am. Chem. Soc. 107, 5159 (1985) and references therein.

    Google Scholar 

  238. D. Pörschke and M. Eigen:J. Mol. Biol. 62, 361 (1971) and references therein.

    Google Scholar 

  239. J.-M. Lehn, A. Rigault, J. Siegel, J. Harrowfield, B. Chevrier and D. Moras:Proc. Natl. Acad. Sci. USA 84, (1987) 2565; J.-M. Lehn and A. Rigault, unpublished results.

    Google Scholar 

  240. K. E. Drexler:Proc. Natl. Acad. Sci. USA 78, 5275 (1981); C. Joachim and J.-P. Launay:Nouv. J. Chim. 8, 723 (1984).

    Google Scholar 

  241. G. C. Pimentel, Chairman:Opportunities in Chemistry, Natl. Acad. Sci., Washington, DC, pp. 219–220.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehn, JM. Supramolecular chemistry — Scope and perspectives: Molecules — Supermolecules — Molecular devices. Journal of Inclusion Phenomena 6, 351–396 (1988). https://doi.org/10.1007/BF00658981

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00658981

Keywords

Navigation