Skip to main content
Log in

On the longitudinal static and dynamic susceptibility of spin-1/2 Kondo systems

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The impurity spin polarization, static susceptibility, and longitudinal impurity spin relaxation rate are calculated for thes-d model as function of temperature and magnetic field for ferromagnetic and antiferromagnetic exchange coupling. The thermodynamic functions and the dynamical susceptibility are obtained from the impurity relaxation spectrum, which is approximated by taking into account the infrared-like singularities. For antiferromagnetic coupling the zero-field susceptibility obeys a Curie-Weiss law1/χ∼4.6(T+θ) for high and intermediate temperatures and it approaches the finite value1/χ∼3.8θ for zero temperature. The zero-field relaxation rate is much larger than the Korringa value; it decreases with temperature and approaches the nonzero value1/T 1∼1.2θ for zero temperature. The relaxation rate decreases with increasing field. The results for the spin polarization agree well with the experimental data for the Cu:Fe alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Abragam,The Principles of Nuclear Magnetism (Clarendon Press Oxford, England, 1961); C. P. Schlichter,Principles of Magnetic Resonance (Harper and Row, New York, 1963).

    Google Scholar 

  2. K. Yoshida and A. Okiji,Progr. Theor. Phys. (Kyoto)34, 505 (1965).

    Google Scholar 

  3. M. B. Walker,Phys. Rev. 176, 432 (1968); R. Orbach and H. J. Spencer,Phys. Rev. 179, 690 (1969).

    Google Scholar 

  4. J. Kondo,Advances in Solid State Physics (Academic Press, New York, 1969), Vol. 23, p. 183;Progr. Theor. Phys. (Kyoto)32, 37 (1964).

    Google Scholar 

  5. Y. Nagaoka,Phys. Rev. 138, A1112 (1965).

    Google Scholar 

  6. H. Suhl,Phys. Rev. 141, 483 (1966).

    Google Scholar 

  7. J. Zittartz,Z. Physik 217, 43 (1968).

    Google Scholar 

  8. K. Fischer,Springer Tracts Mod. Physics 54, 1 (1970).

    Google Scholar 

  9. R. More and H. Suhl,Phys. Rev. Letters 20, 500 (1968).

    Google Scholar 

  10. P. Wölfle, W. Brenig, and W. Götze,Physics Letters 30A, 448 (1969);Z. Physik 235, 59 (1970).

    Google Scholar 

  11. W. Brenig, J. A. Gonzalez, W. Götze, and P. Wölfle,Z. Physik 235, 52 (1970); C. S. Ting,Physics Letters 32A, 21 (1970);J. Phys. Chem. Sol. 32, 395 (1971).

    Google Scholar 

  12. W. Götze, inProc. Conf. on EPR in Metals, Haute-Nendaz, September 1973.

  13. F. Bloch and A. Nordsieck,Phys. Rev. 52, 54 (1937).

    Google Scholar 

  14. P. Nozières and C. T. de Dominicis,Phys. Rev. 178, 1097 (1969).

    Google Scholar 

  15. K. D. Schotte and U. Schotte,Phys. Rev. 182, 479 (1969).

    Google Scholar 

  16. P. W. Anderson and G. Yuval,Phys. Rev. Letters 23, 89 (1969); P. W. Anderson, G. Yuval, and D. R. Hamann,Phys. Rev. B 1, 4464 (1970).

    Google Scholar 

  17. M. Fowler and A. Zawadowski,Solid State Comm. 9, 471 (1971); M. Fowler,Phys. Rev. B 6, 3422 (1972).

    Google Scholar 

  18. A. A. Abrikosov and A. A. Migdal,J. Low Temp. Phys. 3, 519 (1970).

    Google Scholar 

  19. V. Emery and A. Luther,Phys. Rev. B9, 215 (1974).

    Google Scholar 

  20. K. D. Schotte and U. Schotte,Phys. Rev. B 4, 2228 (1971).

    Google Scholar 

  21. W. Götze and P. Schlottmann,Solid State Comm. 13, 17 (1973).

    Google Scholar 

  22. W. Götze and P. Schlottmann,Solid State Comm. 13, 511 (1973).

    Google Scholar 

  23. W. Götze and P. Schlottmann,Solid State Comm. 13, 861 (1973).

    Google Scholar 

  24. W. Wilson, preprint, to be published in the Proc. of the Nobel Symposium 24.

  25. E. C. Hirschkoff, O. G. Symko, and J. C. Wheatley,Physics Letters 33A, 19 (1970).

    Google Scholar 

  26. J. L. Tholence and R. Tournier,Phys. Rev. Letters 25, 867 (1970).

    Google Scholar 

  27. P. Steiner, W. v. Zdrojewski, D. Gumprecht, and S. Hüfner,Phys. Rev. Letters 31, 355 (1973).

    Google Scholar 

  28. R. B. Frankel, N. A. Blum, B. B. Schwartz, and D. J. Kim,Phys. Rev. Letters 18, 1051 (1967).

    Google Scholar 

  29. P. Steiner, W. v. Zdrojewski, D. Gumprecht, and S. Hüfner, private communication.

  30. H. Alloul and P. Bernier, preprint.

  31. W. Götze and P. Wölfle,J. Low Temp. Phys. 5, 575 (1971);6, 455 (1972).

    Google Scholar 

  32. H. Mori,Progr. Theor. Phys. (Kyoto)34, 399 (1965).

    Google Scholar 

  33. W. Götze and P. Schlottmann,J. Low Temp. Phys. 12, 149 (1973).

    Google Scholar 

  34. K. D. Schotte,Z. Physik 230, 99 (1970).

    Google Scholar 

  35. C. M. Hurd,J. Phys. Chem. Solids 28, 1345 (1967).

    Google Scholar 

  36. W. Götze and P. Wölfle,Physics Letters 40A, 249 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Götze, W., Schlottmann, P. On the longitudinal static and dynamic susceptibility of spin-1/2 Kondo systems. J Low Temp Phys 16, 87–118 (1974). https://doi.org/10.1007/BF00655861

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00655861

Keywords

Navigation