Skip to main content
Log in

Absolute astronomical accelerometry

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

“When Infinite Systems succeed one another through an Infinite Space, and none is either inward or outward; may not all the Systems be situated in an accurate Poise; and, because equally attracted on all sides, remain fixed and unmoved? But to this we reply; that unless the very mathematical Center of Gravity of every System be placed and fixed in the very mathematical Center of the Attractive Power of all the rest; they cannot be evenly attracted on all sides, but must preponderate some way or other”.Richard Bentley (1926)

Abstract

Two distinct but fully compatible novel concepts are proposed here for solar/stellar velocity measurements. The first is that of absolute accelerometry proper. This involves two simultaneously, operating servo-control loops First, a variable path-difference Fabry-Perot interferometer is adjusted so that its bandpasses track the fluctuations of either a single spectral line (in the solar case, leading to the solar accelerometer), or of all lines simultaneously (stellar accelerometer). The second loop involves a tunable laser tracking one of the FP bandpasses. The net overall result is that a laser line tracks the stellar/solar ones: the problem of measuring Doppler-shift changes has been transferred from the incoherent to the coherent optics domain. One then measures the beat frequency generated by mixing the tunable laser beam with that of stabilized laser. Only velocity changes are accessible; the devices are true accelerometers, but absolute ones. All instrumental or spectral characteristics drop out; no calibration of any kind is required; hence, one may hope for an unusually low level of systematic errors.

The second concept is that of optimum measurement of Doppler shifts as far as photon count limitations are concerned. A simple but so far never performed calculation leads to the fundamental RMS velocity error corresponding to a given spectral profile and photon count. One next shows that a dispersive spectrometer with an image detector may closely approach that limit provided direct access to a computer is available, and the signal is treated by a specific algorithm. This treatment being precisely the one used in the stellar accelerometer, our device is seen as the first proposed one approaching fundamental limits in this field; however, standard radial velocity measurements (not involving accelerometry) should also benefit from our proposal. A full calculation shows that a velocity error reduction of the order of 30 is within reach relative to the most efficient so far available device, i.e., CORAVEL. For faint objects, detector noise must be added, but the treatment remains demonstrably optimum.

The two principal fields of application for absolute accelerometry are celestial seismology (a seismometer is nothing but an accelerometer), and the search for extra-solar planetary systems. In both cases a large number of objects will be accessible with a small telescope. One may also look for solar system accelerations (relative to some system of reference stars) due to any cause whatsoever: for instance a faint solar companion, or even gravitational waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbas, M., Mumma, M., Kostiuk, T., and Buhl, D.: 1976,Appl. Opt. 15, 427.

    Google Scholar 

  • Anderson, J. D., Anderson, J., Estabrook, F., Hellings, R., Lau, E., and Wahlquist, H.: 1984,Nature 308, 158.

    Google Scholar 

  • Allen, C.: 1973,Astrophysical Quantities, Athlone Press, New York.

    Google Scholar 

  • Appourchaux, T.: 1984,Meudon Conf. 1984, p. 117.

  • Ashoworth, M.: 1983,Nature 301 313.

    Google Scholar 

  • Backer, D.: 1983,Nature 301, 314.

    Google Scholar 

  • Baranne, A., Mayor, M., and Poncet, J.: 1979,Vistas Astron. 23, 279.

    Google Scholar 

  • Bertotti, B.: 1983,Monthly Notices Roy. Astron. Soc. 203, 945.

    Google Scholar 

  • BIPM: 1979,Rapport du comité pour la définition du mètre (edited by Bureau International des Poids et Mesures).

  • Bordé, Ch., Camy, G., Decomps, B., and Descoubes, J. P.: 1980,J. Physique 42, 1393.

    Google Scholar 

  • Brookes, J. et al.: 1978,Monthly Notices Roy. Astron. Soc. 185, 1.

    Google Scholar 

  • Brown, T.: 1980, in Dunn (ed.),Solar Instrumentation, Sacramento Peak Publications, p. 155.

  • Burghardt, B., Hoeffgen, H., Meisel, G., Reinert, W., and Vowinkel, B.: 1979,Appl. Phys. Letters 35, 498.

    Google Scholar 

  • Campbell, B.: 1983,Precision Radial Velocities, in press.

  • Chevillard, J., Connes, P., Cuisenier, M., Friteau, J., and Marlot, C.: 1977,Appl. Opt. 16, 1817.

    Google Scholar 

  • Christensen-Dalsgaard, J.: 1984,Meudon Conf. 1984, p. 11.

  • Claverie,et al.: 1985 (in press).

  • Connes, P.: 1958,J. Phys. 19, 262.

    Google Scholar 

  • Connes, P.: 1966,J. Opt. Soc. Am. 56, 896.

    Google Scholar 

  • Connes, P.: 1978, ‘Workshop on Extrasolar Planetary Detection’,NASA Publ. 2124, 197.

    Google Scholar 

  • Connes, P.: 1983,Absolute Astronomical Accelerometry (unpublished).

  • Connes, P.: 1984,Meudon Conf. 1984, p. 91.

  • Connes, J. and Connes, P.: 1982,Solar Oscillations, Atmospheric, and Instrumental Problems, presented at DISCO-ESA Utrecht Workshop.

  • Connes, J. and Connes, P.: 1984,Meudon Conf. 1984, p. 135.

  • Couder, A.: 1933,Réunions de l'Institut d'Optique 4, 3.

    Google Scholar 

  • Daniel, H. and Steiner, M.: 1981,Appl. Phys. 25, 7.

    Google Scholar 

  • Da Costa: 1977,Astron. J. 82, 810.

    Google Scholar 

  • Deming, D.: 1983,Detection of Extra-Solar Planetary Systems via Infrared Spectroscopy, presented at NASA Planetary Detection Workshop and private communication.

  • Delbouille, L., Roland, G., and Neven, L.: 1973,Photometric Atlas of the Solar Spectrum, Institut d'Astrophysique, Univ. de Liège, Liège.

    Google Scholar 

  • Detweiler, S.: 1979,Astrophys. J. 234, 1100.

    Google Scholar 

  • Dittmer: 1977, SUIPR Report 686, Institute for Plasma Research Stanford Univ. Stanford.

    Google Scholar 

  • Dravins, D.: 1975,Astron. Astrophys. 43, 45.

    Google Scholar 

  • Dravins, D.: 1981,Astron. Astrophys. 96, 345.

    Google Scholar 

  • Estabrook, F. and Wahlquist, H.: 1975,GRG 5, 439.

    Google Scholar 

  • Evans, J.: 1980, in Dunn (ed.),Solar Instrumentation, Sacramento Peak Publications, p. 155.

  • Evenson, K.: 1981,J. Phys. 42C8, 473.

    Google Scholar 

  • Fellgett, O.: 1955,Ppt. Acta 2, 9.

    Google Scholar 

  • Flint: 1984,Sky Telesc. 40, No. 2.

  • Fossat, E., Gelly, B., Grec, G., and Decanini, Y.: 1984,Meudon Conf. 1984, p. 77.

  • Fossat, E. et al.: 1984,Compt. Rend. Acad Sci. 297, 17.

    Google Scholar 

  • Geary, C.: 1981,SPIE 290, 51.

    Google Scholar 

  • Grec, G., Fossat, E., and Vernin, J.: 1976,Astron. Astrophys. 50, 221.

    Google Scholar 

  • Grec, G., Fossat, E., and Pomerantz, M.: 1980,Nature,288, 541.

    Google Scholar 

  • Griffin, R.: 1967,Astrophys. J. 48, L48.

    Google Scholar 

  • Griffin, R. and Griffin, R.: 1973,Monthly Notices Roy. Astron. Soc. 162, 143.

    Google Scholar 

  • Griffin, R. and Griffin, R.: 1968,Atlas of the Arcturus Spectrum, University of Cambridge, Cambridge.

    Google Scholar 

  • Griffin, R. and Griffin, R.: 1981,Atlas of the Procyon Spectrum, University of Cambridge, Cambridge.

    Google Scholar 

  • Guelachvili, G.: 1981,Appl. Opt. 20, 2121.

    Google Scholar 

  • Gullahorn, G.: 1978,Astron. J. 83, 1219.

    Google Scholar 

  • Harrison, R.: 1977,Nature 270, 324.

    Google Scholar 

  • Helmcke, J., Lee, S., and Hall, J.: 1982,Appl. Opt. 21, 686.

    Google Scholar 

  • Hoskin, M.: 1982,Stellar Astronomy Historical Studies, Science History Publications.

  • Huggins, W.: 1968,Phil. Trans. 158, 548.

    Google Scholar 

  • Janesick, J., Hynecek, J., and Blouke, M.: 1981,SPIE 290, 6, 165.

    Google Scholar 

  • Jones, R. V.: 1959,J. Sci. Inst. 36, 90.

    Google Scholar 

  • Katila, T. and Riski, K.: 1981,Phys. Letters 83A, 51.

    Google Scholar 

  • Kaufman, W.: 1970,Nature 227, 157.

    Google Scholar 

  • Kotov, V., Severny, A., and Tsap, T.: 1978,Monthly Notices Roy. Astron. Soc. 183, 61.

    Google Scholar 

  • Kurucz, R. L. and Furenlid, I.:Smithsonian Astrophys. Obs. Special Rep. 387 (year not indicated).

  • MacMillan, R.: 1982,Radial Velocity Spectrometer Report, Lunar and Planetary Laboratory, Univ. of Arizona and private communication.

  • Mashloon, B.: 1982,Monthly Notices Roy. Astron. Soc. 199, 659.

    Google Scholar 

  • Meudon Conference 1984: see note 2.

  • Poncet, J.: 1978,Publ. Obs. Genève B6.

  • Pound, R. V. and Snider, J. L.: 1965,Phys. Rev. 140B, 788.

    Google Scholar 

  • Praderie, F.: 1984, COSPAR Meeting Gratz, Session E6; alsoMeudon Conf. 1984, p. 379.

  • Scherrer, P. and Wilcox, J.: 1983,Solar Phys. 82, 37.

    Google Scholar 

  • Serkowski, K.: 1976,Icarus 27, 13.

    Google Scholar 

  • Serkowski, K.: 1979,SPIE 172, 130.

    Google Scholar 

  • Serkowski, K.: 1979,NASA Conf Publ. 2124.

  • Serkowski, K., Freaker, J., Heacox, W., KenKnight, C., and Roland, E.: 1978,Astrophys. J. 228, 630.

    Google Scholar 

  • Severny, A., Kotov, A., and Tsap, T.: 1976,Nature 259, 87.

    Google Scholar 

  • Shapiro, I., Reasenberg, R., MacNeil, P., and Goldstein, R.: 1977,J. Geophys. Res. 82, 4329; see alsoAstrophys. J. 234, L219.

    Google Scholar 

  • Smith, M.: 1982,Astrophys. J. 253, 727.

    Google Scholar 

  • Smith, M.: 1982,Astrophys. J. 265, 325.

    Google Scholar 

  • Traub, W., Mariska, J., and Carleton, N.: 1978,Astrophys. J. 223, 583.

    Google Scholar 

  • TRIAD: 1974, AIAA Paper No. 74-215, AIAA 12th Aerospace Sciences Meeting.

  • Walraven R.: 1983,Nature 305, 665.

    Google Scholar 

  • Walraven, T. and Walraven, J.: 1972,Auxiliary Instrumentation for Large Telescopes, ESO-CERN conf. Proc., p. 175.

  • Wilson, R. C.: 1979,Appl. Opt. 18, 179.

    Google Scholar 

  • Woodard, M. and Hudson, H. S.: 1983,Nature 305, 589.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Connes, P. Absolute astronomical accelerometry. Astrophys Space Sci 110, 211–255 (1985). https://doi.org/10.1007/BF00653671

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00653671

Keywords

Navigation