Skip to main content
Log in

The visual pigment of a stomatopod crustacean,Squilla empusa

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

Stomatopod crustaceans are visually active animals which have large, mobile compound eyes of unique design. Aspects of their ecology and behavior suggest they may be able to discriminate hues. Isolated rhabdoms of the squillid stomatopod,Squilla empusa, were investigated using microspectrophotometry and fluorometry. A single rhodopsin, ofλ max507 nm, exists in the main rhabdom. Its stable metarhodopsin, withλ max503 nm, possesses typical arthropod fluorescence characteristics. No evidence was found for a visual pigment with peak absorption in the ultraviolet. Vision in this animal might therefore be monochromatic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ASW :

artificial sea water

References

  • Bruno MS, Goldsmith TH (1974) Rhodopsin of the blue crabCallinectes: evidence for absorption differences in vitro and in vivo. Vision Res 14:653–658

    Google Scholar 

  • Bruno MS, Mote MI, Goldsmith TH (1973) Spectral absorption and sensitivity measurements in single ommatidia of the green crab,Carcinus. J Comp Physiol 82:151–163

    Google Scholar 

  • Bruno MS, Barnes SN, Goldsmith TH (1977) The visual pigment and visual cycle of the lobster,Homarus. J Comp Physiol 120:123–142

    Google Scholar 

  • Burrows M (1969) The mechanics and neural control of the prey capture strike in the mantid shrimpsSquilla andHemisquilla. Z Vergl Physiol 62:361–381

    Google Scholar 

  • Caldwell RL, Dingle H (1975) Ecology and evolution of agonistic behavior in stomatopods. Naturwissenschaften 62:214–222

    Google Scholar 

  • Cavanaugh GM (1956) Formulae and methods of the marine biological laboratory chemical room. Woods Hole, Mass

    Google Scholar 

  • Collins JS, Goldsmith TH (1981) Spectral properties of fluorescence induced by glutaraldehyde fixation. J Histochem Cytochem 29:411–414

    Google Scholar 

  • Cronin TW, Goldsmith TH (1981) Fluorescence of crayfish metarhodopsin studied in single rhabdoms. Biophys J 35:653–664

    Google Scholar 

  • Cronin TW, Goldsmith TH (1982a) Photosensitivity spectrum of crayfish rhodopsin measured using fluorescence of metarhodopsin. J Gen Physiol 79:313–332

    Google Scholar 

  • Cronin TW, Goldsmith TH (1982b) Quantum efficiency and photosensitivity of the rhodopsin-metarhodopsin conversion in crayfish photoreceptors. Photochem Photobiol 36:447–454

    Google Scholar 

  • Cummins DR, Goldsmith TH (1981) Cellular identification of the violet receptor in the crayfish eye. J Comp Physiol 142:199–202

    Google Scholar 

  • Denys CJ, Brown PK (1982) Euphausiid visual pigments. The rhodopsins ofEuphausia superba andMeganyctiphanes norvegica (Crustacea, Euphausiacea). J Gen Physiol 80:451–472

    Google Scholar 

  • Dingle H, Caldwell RL (1969) The aggressive and territorial behaviour of the mantis shrimpGonodactylus bredini Manning (Crustacea: Stomatopoda). Behaviour 33:115–136

    Google Scholar 

  • Ebrey TG, Honig B (1977) New wavelength dependent visual pigment nomograms. Vision Res 17:147–151

    Google Scholar 

  • Franceschini N, Kirschfeld K, Minke B (1981) Fluorescence of photoreptor cells observed in vivo. Science 213:1264–1267

    Google Scholar 

  • Goldsmith TH (1978) The spectral absorption of crayfish rhabdoms: pigment, photoproduct, and pH sensitivity. Vision Res 18:463–473

    Google Scholar 

  • Goldsmith TH, Fernandez HR (1968) Comparative studies of crustacean spectral sensitivity. Z Vergl Physiol 60:156–175

    Google Scholar 

  • Goldsmith TH, Dizon AE, Fernandez HR (1968) Microspectrophotometry of photoreceptor organelles from eyes of the prawnPalaemonetes. Science 161:468–470

    Google Scholar 

  • Hamacher K, Stieve H (1984) Spectral properties of the rhodopsin-system of the crayfishAstacus leptodactylus. Photochem Photobiol 39:379–390

    Google Scholar 

  • Hays D, Goldsmith TH (1969) Microspectrophotometry of the visual pigment of the spider crabLibinia emarginata. Z Vergl Physiol 65:218–232

    Google Scholar 

  • Hyatt GW (1975) Physiological and behavioral evidence for color discrimination by fiddler crabs (Brachyura, Ocypodidae, genusUca). In: Vernberg FJ (ed) Physiological ecology of estuarine organisms. University of South Carolina Press, Columbia SC, pp 333–365

    Google Scholar 

  • Jerlov NG (1976) Marine optics. Elsevier, New York

    Google Scholar 

  • Kong KL, Fung YM, Wasserman GS (1980) Filter-mediated color vision with one visual pigment. Science 207:783–786

    Google Scholar 

  • Leggett LMW (1979) A retinal substrate for colour discrimination in crabs. J Comp Physiol 133:159–166

    Google Scholar 

  • Levine JS, Lobal PS, MacNichol EF (1980) Visual communication in fishes. In: Ali MA (ed) Environmental physiology of fishes. Plenum, New York, pp 447–476

    Google Scholar 

  • Manning RB, Schiff H, Abbott BC (1984a) Cornea shape and surface structure in some stomatopod Crustacea. J Crust Biol 4:502–513

    Google Scholar 

  • Manning RB, Schiff A, Abbott BC (1984b) Eye structure and classification of stomatopod Crustacea. Zoologica Scripta 13:41–44

    Google Scholar 

  • Martin FG, Mote MI (1982) Color receptors in marine crustaceans: a second spectral class of retinular cell in the compound eyes ofCallinectes andCarcinus. J Comp Physiol 145:549–554

    Google Scholar 

  • Schaller F (1953) Verhaltens und sinnesphysiologische Beobachtungen anSquilla mantis. Z Tierpsychol 10:1–12

    Google Scholar 

  • Schiff H (1963) Dim light vision ofSquilla mantis L. Am J Physiol 205:927–940

    Google Scholar 

  • Schiff H, Gervasio A (1969) Functional morphology of theSquilla retina. Pubbl Staz Zool Napoli 37:610–629

    Google Scholar 

  • Schönenberger N (1977) The fine structure of the compound eye ofSquilla mantis (Crustacea, Stomatopoda). Cell Tissue Res 176:205–233

    Google Scholar 

  • Schram FR (1982) The fossil record and evolution of Crustacea. In: Abele LG (ed) Systematics, the fossil record, and biogeography. (The biology of Crustacea, vol I). Academic Press, New York, pp 94–147

    Google Scholar 

  • Smith RC, Baker KS (1979) Penetration of UV-B and biologically effective dose-rates in natural waters. Photochem Photobiol 29:311–323

    Google Scholar 

  • Stavenga DG, Franceschini N, Kirschfeld K (1984) Fluorescence of housefly visual pigment. Photochem Photobiol 40:653–660

    Google Scholar 

  • Stavenga DG, Schwemer J (1984) Visual pigments of invertebrates. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum Press, New York, pp 11–61

    Google Scholar 

  • Wald G, Seldin EB (1968) Spectral sensitivity of the common prawn,Palaemonetes vulgaris. J Gen Physiol 51:694–700

    Google Scholar 

  • Waterman TH (1981) Polarization sensitivity. In: Autrum H (ed) Invertebrate visual centers and behavior I. (Handbook of sensory physiology, vol VII/6B). Springer, Berlin Heidelberg New York, pp 281–470

    Google Scholar 

  • Waterman TH, Pooley AS (1980) Crustacean eye fine structure seen with scanning electron microscopy. Science 209:235–240

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cronin, T.W. The visual pigment of a stomatopod crustacean,Squilla empusa . J. Comp. Physiol. 156, 679–687 (1985). https://doi.org/10.1007/BF00619117

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00619117

Keywords

Navigation