Skip to main content
Log in

Elektrische Untersuchungen am Hauptausführungsgang der Speicheldrüsen des Menschen

I. Potentialmessung

Investigation of the main duct epithelium of human salivary glands by electrophysiological methods

I. The transepithelial potential difference

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

The electrical potential difference (PD) across the main duct epithelium of the salivary glands was measured in human volunteers. In the resting gland the PD was 38±3 mV, lumen negative. After stimulation of secretion by pilocarpine the PD increased to about 100 mV (lumen negative) and returned to the resting level when secretion ceased. The same increase of PD was observed, when saliva was collected during stimulation and infused back into the duct during the resting state. From this it was concluded that pilocarpine had no direct action on the duct epithelium and that the increase of PD was caused by the changes that are known to occur in salivary electrolyte concentrations during stimulation.

This conclusion was tested by perfusion of the duct with different test solutions, so that the influence of single cations and anions on the PD could be studied. With sulfate solutions it was found that the luminal surface of the epithelium behaved like a Na-electrode; a tenfold change of Na-concentration developed nearly 61 mV while K and choline did not affect the PD. Thus the luminal cellwall appears to be selectively permeable to Na. When the duct was perfused with chloride solutions the PD was found to follow a typical time course with the initial transient values yielding a slope of 61 mV and the steady state values a slope of 35 mV for a tenfold change of Na-concentration. This observation can be explained when chloride acts as a shunt ion and when the chloride concentration within the epithelium, which determines the chloride conductance, follows the luminal chloride concentration with a time delay.

From the Na und K concentrations of saliva found previously during stop flow experiments and from the present PD measurements it was concluded that the human salivary main ducts, like those of the rat, actively reabsorb Na from the saliva and probably also actively secrete K into the saliva. The localization of the single active and passive transport steps with respect to the luminal and contraluminal cell side is discussed on the basis of Ussing's model for Na transport across frog skin, in favour of which new evidence can be put forward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literatur

  1. Bargmann, W.: Histologie und mikroskopische Anatomie des Menschen, S. 391. Stuttgart: G. Thieme 1967.

    Google Scholar 

  2. Bricker, N. S., Biber, T., Ussing, H. H.: Exposure of the isolated frog skin to high potassium concentrations at the internal surface. I. Bioelectric phenomena and sodium transport. J. clin. Invest.42, 88–99 (1963).

    Google Scholar 

  3. Burg, M.: persönliche Mitteilung.

  4. Cereijido, M., Curran, P. F.: Intracellular electrical potentials in frog skin. J. gen. Physiol.48, 543–557 (1965).

    Google Scholar 

  5. Chernick, W. S., Barbero, G. J., Parkins, F. M.: Studies on submaxillary saliva in cystic fibrosis. J. Pediat.59, 890–898 (1961).

    Google Scholar 

  6. ———: Reversal of submaxillary salivary alterations in cystic fibrosis by guanethidine. Modern problems in pediatrics, Vol. 10, Part I, pp. 125–134, Proceedings 4th Internat. Conf. on Cystic Fibrosis of the Pancreas (Mucoviscidosis). Berne/Grindelwald. Edited by E. Rossi and E. Stoll. Basel: Karger 1967.

    Google Scholar 

  7. Curran, P. F., Cereijido, M.: K fluxes in frog skin. J. gen. Physiol.48, 1011–1033 (1965).

    Google Scholar 

  8. Essig, A., Frazier, H. S., Leaf, A.: Evidence for “electrogenic” active sodium transport in an epithelial membrane. Nature (Lond.)197, 701 (1963).

    Google Scholar 

  9. Frazier, H., Leaf, A.: The electrical characteristics of active sodium transport in toad bladder. J. gen. Physiol.46, 491–503 (1963).

    Google Scholar 

  10. Gatzy, J. T., Clarkson, T. W.: The effect of mucosal and serosal solution cations on bioelectric properties of the isolated toad bladder. J. gen. Physiol.48, 647–671 (1965).

    Google Scholar 

  11. Giebisch, G., Malnic, G., Klose, R. M., Windhager, E. E.: Effect of ionic substitution on distal potential differences in rat kidney. Amer. J. Physiol.211, 560–568 (1966).

    Google Scholar 

  12. Gruber, W. D.: unveröffentlichte Befunde.

  13. Gugler, E., Pallavicini, J. C., Swerdlow, H., di Sant'Agnese, P. A.: Role of calcium in submaxillary saliva of patients with cystic fibrosis. J. Pediat.71, 585–588 (1967).

    Google Scholar 

  14. Herrera, F. C.: Bioelectric properties and ionic content in toad bladder. J. gen. Physiol.51, 261–270 (1968).

    Google Scholar 

  15. Kashgarian, M., Stöckle, H., Gottschalk, C. W., Ullrich, K. J.: Transtubular electrochemical potentials of sodium and chloride in proximal and distal renal tubules of rats during antidiuresis and water diuresis (diabetes insipidus). Pflügers Arch. ges. Physiol.277, 89–106 (1963).

    Google Scholar 

  16. Kedem, O.: Criteria, of active transport. In: Membrane transport and metabolism. London-New York: Academic Press 1960.

    Google Scholar 

  17. Kidder, G. W., Cereijido, M., Curran, P. F.: Transient changes in electrical potential differences across frog skin. Amer. J. Physiol.207, 935–940 (1964).

    Google Scholar 

  18. Klahr, S., Bricker, N. S.: On the electrogenic nature of active sodium transport across the isolated frog skin. J. clin. Invest.43, 922–930 (1964).

    Google Scholar 

  19. Knauf, H.: unveröffentlichte Befunde.

  20. —, Frömter, E.: Die Kationenausscheidung der großen Speicheldrüsen des Menschen. Pflügers Arch.316, 213–237 (1970).

    Google Scholar 

  21. ——: Elektrische Untersuchungen am Hauptausführungsgang der großen Speicheldrüsen des Menschen. II. Bestimmung des Kurzschlußstromes. Pflügers Arch.316, 259–274 (1970).

    Google Scholar 

  22. —— Gebler, B.: Der isolierte Speicheldrüsengang als Modell zur Untersuchung des aktiven Natrium-und Kaliumtransportes Pflügers Arch.312, 92 (1969).

    Google Scholar 

  23. Koefoed-Johnsen, V., Ussing, H. H.: The nature of the frog skin potential. Acta physiol scand.42, 298–308 (1958).

    Google Scholar 

  24. Mangos, J. A., Braun, G.: Excretion of total solute, sodium and potassium in the saliva of the rat parotid gland. Pflügers Arch. ges. Physiol.290, 184–192 (1966).

    Google Scholar 

  25. Martinez, J. R., Holzgreve, H., Frick, A.: Micropuncture study of submaxillary glands of adult rats. Pflügers Arch. ges. Physiol.290, 124–133 (1966).

    Google Scholar 

  26. Rosenberg, T.: On accumulation and active transport in biological systems. I. Thermodynamic considerations. Acta chem. scand.2, 14–33 (1948).

    Google Scholar 

  27. Rossenbeck, H.-G.: persönliche Mitteilung.

  28. Schlögl, R.: Zum Materietransport durch Porenmembranen. Neuere theoretische und experimentelle Untersuchungen. Habil.-Schrift, Göttingen 1957.

  29. Sharp, G. W. G., Leaf, A.: Mechanism of action of aldosterone. Physiol. Rev.46, 593–633 (1966).

    Google Scholar 

  30. Ussing, H. H., Zerahn, K.: Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta physiol. scand.23, 110–127 (1951).

    Google Scholar 

  31. Wick, T., Frömter, E.: Das Zellpotential des proximalen Konvoluts der Rattenniere in Abhängigkeit von der peritubulären Ionenkozentration. Pflügers Arch. ges. Physiol.294, 17 (1967).

    Google Scholar 

  32. Young, J. A.: Microperfusion investigation of chloride fluxes across the epithelium of the main excretory duct of the rat submaxillary gland. Pflügers Arch.303, 366–374 (1968).

    Google Scholar 

  33. —, Asz, M., Weber, F. D.: Microperfusion investigation of bicarbonate transport across main duct epithelium of rat submaxillary gland. Aust. J. exp. Biol. med. Sci.47, 36 (1969).

    Google Scholar 

  34. —, Frömter, E., Schögel, R., Hamann, K. F.: A microperfusion investigation of sodium resorption and potassium secretion by the main excretory duct of the rat submaxillary gland. Pflügers Arch. ges. Physiol.295, 157–172 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knauf, H., Frömter, E. Elektrische Untersuchungen am Hauptausführungsgang der Speicheldrüsen des Menschen. Pflugers Arch. 316, 238–258 (1970). https://doi.org/10.1007/BF00586586

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00586586

Key-Words

Schlüsselwörter

Navigation