Skip to main content
Log in

Current source density analysis: Methods and application to simultaneously recorded field potentials of the rabbit's visual cortex

  • Heart, Circulation, Respiration and Blood; Environmental and Exercise Physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

This paper deals with the application of current source density (CSD) analysis to simultaneously recorded intracortical field potentials of the rabbit's visual cortex. Recordings were made with multielectrodes with either 8 contacts at distances of 300 μm, or 16 contacts at distances of 150 μm on one carrier needle. For synchronized activities, a spatial resolution of 150 μm turned out to be sufficient to record all depth-varying details of the field potentials; for seizure potentials even a spacing of 300 μm was adequate in most cases.

For practical application, an appropriate spacing of the measuring points has to be chosen for a satisfactory estimation of the first and second derivatives of the field potentials. For this reason an interpolation procedure is applied to reduce the spacing from 300 μm or 150 μm electrode contact distances, respectively, and to obtain intermediate values at 75 μm distances. With this spacing satisfactory estimations of the second derivative are obtained.

Theoretically, CSD analysis has to be made three-dimensionally, but under certain conditions which are discussed, a one-dimensional analysis can be applied. An unknown quantity is σz, the vertical conductivity. It turned out that average values obtained from different experiments are not representative and that the vertical conductivity has to be measured in every experiment. This is caused by the great individual differences of the cortices even if the same stereotactic coordinates are chosen. Therefore, in every experiment relative conductivity measurements are performed. The influence of different conductivity values within the various layers and the influence of a conductivity gradient is discussed and demonstrated by examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Fleischhauer K, Petsche H, Wittkowski W (1972) Vertical bundles of dendrites in the neocortex. Z Anat Entwicklungsgesch 136:213–223

    Google Scholar 

  • Freeman J A, Nicholson C (1975) Experimental optimization of current source density technique for anuran cerebellum. J Neurophysiol 38:369–382

    Google Scholar 

  • Haberly L B, Sheperd G H (1973) Current-density analysis of summed evoked potentials in opossum prepyriform cortex. J Neurophysiol 36:789–803

    Google Scholar 

  • Hamming R W (1962) Numerical methods for scientists and engineers. McGraw, New York

    Google Scholar 

  • Hoeltzell P B, Dykes R W (1979) Conductivity in the somatosensory cortex of the cat — evidence for cortical anisotropy. Brain Res 177:61–82

    Google Scholar 

  • Howland B, Lettvin J Y, McCullogh W S, Pitts W, Wall P D (1955) Reflex inhibition by dorsal root interaction. J Neurophysiol 18:1–17

    Google Scholar 

  • Humphrey D R (1968) Re-analysis of the antidromic cortical response. II. On the contribution of cell discharge and PSPs to the evoked potentials. Electroencephalogr Clin Neurophysiol 25:421–442

    Google Scholar 

  • Kwan H C, Murphy J T (1974a) A Basis for extracellular current density analysis in cerebellar cortex. J. Neurophysiol 37:170–180

    Google Scholar 

  • Kwan H C, Murphy J T (1974b) Extracellular current density analysis of responses in cerebellar cortex to climbing fiber activation. J Neurophysiol 37:333–345

    Google Scholar 

  • Kwan H C, Murphy J T (1974c) Extracellular current density analysis of responses in cerebellar cortex to mossy fiber activation. J Neurophysiol 37:947–953

    Google Scholar 

  • Mauer J, Fleischhauer K (1979) Preferential orientation of small profiles in the neuropil of lamina I. Anat Embryol 157:133–149

    Google Scholar 

  • Mitzdorf U, Singer W (1977) Laminar segregation of afferents to lateral geniculate nucleus of the cat: an analysis of current source density. J Neurophysiol 40:1227–1244

    Google Scholar 

  • Mitzdorf U, Singer W (1978) Prominent excitatory pathways in the cat visual cortex A17 and A18): a current source density analysis of electrically evoked potentials. Exp Brain Res 33:371–394

    Google Scholar 

  • Mitzdorf U, Singer W (1979) Excitatory synaptic ensemble properties in the visual cortex of the macaque monkey: a current source density analysis of electrically evoked potentials. J Comp Neurol 187:71–84

    Google Scholar 

  • Müller-Paschinger I B, Prohaska O, Vollmer R, Petsche H (1979) The histological marking with multiple thin-film electrode probe for intracortical recordings. Electroencephalogr Clin Neurophysiol 47:627–628

    Google Scholar 

  • Nicholson C, Freeman JA (1975) Theory of current source density analysis and determination of conductivity tensor for anuran cerebellum. J Neurophysiol 38:356–368

    Google Scholar 

  • Petsche H, Rappelsberger P, Frey Z (1972) Intracortical aspects of the synchronization of self-sustained bioelectrical activities. In: Petsche H, Brazier M A B (eds) Synchronization of EEG Activities in Epilepsies. Springer, Wien, p 263

    Google Scholar 

  • Petsche H, Prohaska O, Rappelsberger P, Vollmer R, Pockberger H (1977) Simultaneous laminar intracortical recordings in seizures. Electroencephalogr Clin Neurophysiol 42:414–416

    Google Scholar 

  • Pockberger H, Petsche H, Rappelsberger P, Müller-Paschinger I B, Prohaska O (1979) Epi- und intrakortikale Aspekte visuell evozierter Potentiale. EEG-EMG 10:184–193

    Google Scholar 

  • Prohaska O, Olcaytug F, Womastek K, Petsche H (1977) A multielectrode for intracortical recordings produced by thin-film technology. Electroencephalogr Clin Neurophysiol 42:421–422

    Google Scholar 

  • Prohaska O, Pacha F, Pfundner P, Petsche H (1979) A 16-fold semimicroelectrode for intracortical recording of field potentials. Electoencephalogr Clin Neurophysiol 47:629–631

    Google Scholar 

  • Rall W (1962) Electrophysiology of a dendritic neuron model. Biophys J 2 (Part 2):145–167

    Google Scholar 

  • Rappelsberger P, Petsche H, Vollmer R, Lapins R (1979a) Rhythmicity in seizure patterns: intracortical aspects. In: Speckmann E J, Caspars H (eds) Origin of cerebral field potentials. G. Thieme, Stuttgart, p 80

    Google Scholar 

  • Rappelsberger P, Müller-Paschinger I B, Petsche H, Pockberger H, Prohaska O, Vollmer R (1979b) Zur intrakortikalen Genese von Spontantätigkeit und Photic Driving: EEG histologische Korrelationen im optischen Kortex. EEG-EMG 10:175–183

    Google Scholar 

  • Rémond A Conte C (1964) Evolution temporelle et valeur moyenne de l'intensité efficace d'un EEG différentiel. Rev. Neurol 111:283

    Google Scholar 

  • Rose M (1931) Cytoarchitektonischer Atlas der Großhirnrinde des Kaninchens. J Physiol Neurol (Leipzig) 43:353–400

    Google Scholar 

  • Stoer G (1976) Einführung in die numerische Mathematik I. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Thompson J M, Woolsey C N, Talbot S A (1950) Visual areas I and II of the cerebral cortex of the rabbit. J Neurophysiol 13:277–288

    Google Scholar 

  • Yedlin M, Kwan H C, Murphy J T, Nguyen-Huu H, Wong Y C (1974) Electrical conductivity in cat cerebellar cortex. Exp Neurol 43:555–569

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rappelsberger, P., Pockberger, H. & Petsche, H. Current source density analysis: Methods and application to simultaneously recorded field potentials of the rabbit's visual cortex. Pflugers Arch. 389, 159–170 (1981). https://doi.org/10.1007/BF00582108

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00582108

Key words

Navigation