Skip to main content
Log in

Anti-microtubular herbicides and fungicides affect Ca2+ transport in plant mitochondria

  • Published:
Planta Aims and scope Submit manuscript

Abstract

The herbicides amiprophosmethyl (APM) trifluralin, and oryzalin as well as the fungicides methylbenzimidazolyl carbamate (MBC), O-isopropyl N-phenyl carbamate (IPC), and chlorisopropyl N-phenyl carbamate (CIPC), which are known to cause the destruction of microtubules in vivo but do not interfere with tubulin polymerization in vitro, have been examined with respect to their ability to affect Ca2+ transport in isolated cell organelles. In contrast to colchicine which has no effect on Ca2+ transport in isolated mitochondrial and microsomal fractions, all of the substances investigated caused considerable reduction of ca2+ net uptake into mitochondrial but not into microsomal fractions. This reduction has been shown to be due to an increase in passive Ca2+ efflux. These results have been extrapolated to in vivo situations where they are postulated to act by raising cytoplasmic Ca2+ levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APM:

amiprophosmethyl

CIPC:

chlorisopropyl N-phenyl carbamate

IPC:

O-isopropyl N-phenyl carbamate

MBC:

methylbenzimidazolyl carbamate

Mops:

3-(N-Morpholino) propanesulfonic acid

DMSO:

dimethylsulfoxide

References

  • Ash, G.R., Bygrave, F.L. (1977) Ruthenium red as a probe in assessing the potential of mitochondria to control intracellular calcium in liver. FEBS Lett.78, 166–168

    Google Scholar 

  • Ashton, F.M., Crafts, A.S. (1973) Mode of action of herbicides. Wiley Interscience, New York

    Google Scholar 

  • Bartels, P.G., Hilton, J.L. (1973) Comparison of trifluralin, pronamide, propham and colchicine treatment on microtubules. Pestic. Biochem. Physiol.3, 462–472

    Google Scholar 

  • Bygrave, F.L. (1978) Calcium movements in cells. TIBS3, 175–178

    Google Scholar 

  • Carafoli, E. (1974) Mitochondrial uptake of calcium ions and the regulation of cell function. Biochem. Soc. Symp.39, 89–109

    Google Scholar 

  • Carafoli, E., Lehninger, A.L. (1971) A survey of the interaction of calcium with mitochondria from different tissues and species. Biochem. J.122, 681–690

    Google Scholar 

  • Carafoli, E., Crompton, M., Malmström, K., Sigel, E., Salzman, M., Chiesi, M., Affolter, H. (1977) Mitochondrial calcium transport and the intracellular calcium homeostasis. In: Biochemistry of membrane transport, p. 535–551, Semenza, G., Carafoli, E., eds. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Cheung, W.Y., Lynch, T.J., Wallace, R.W. (1978) In: Advances in cyclic nucleotide research, vol. 9, p. 233–251, George, W.J., Jgnarro, L.J., eds. Raven Press, New York

    Google Scholar 

  • Collis, P.S., Weeks, D. (1978) Selective inhibition of tubulin synthesis by amiprophosmethyl during flagellar regeneration inChlamydomonas reinhardii. Science202, 440–442

    Google Scholar 

  • Davidse, L.C., Flach, W. (1977) Differential binding of methylbenzimidazol-z-yl-carbamate to fungal tubulin as a mechanism of resistance of this anti-mitotic agent in mutant strains ofAspergillus nidulans. J. Cell Biol.72, 174–193

    Google Scholar 

  • Dieter, P., Marmé, D. (in press) Ca2+ transport in mitochondrial and microsomal subcellular fractions from higher plants. Planta

  • Dustin, P. (1978) Microbules. Springer, Heidelberg New York Berlin

    Google Scholar 

  • Fuller, G.M., Ellison, J.J., McGill, M., Sordahl, L.A., Brinkley, B.R. (1975) Studies on the inhibitory role of calcium in the regulation of microtubule assembly in vitro and in vivo. In: Microtubules and microtubule inhibitors, pp. 379–390, Borgers, M., de Brabander, M., eds. North Holland Publishing Co, Amsterdam

    Google Scholar 

  • Gross, J., Marmé, D. (1978) ATP-dependent Ca2+ uptake into plant membrane vesicles. Proc. Natl. Acad. Sci. USA75, 1232–1236

    Google Scholar 

  • Haga, T., Abe, T., Kurokawa, M. (1974) Polymerization and depolymerization of microtubules in vitro as studied by flow birefrigence. FEBS Lett.39, 291–295

    Google Scholar 

  • Hales, C.N., Luzio, J.P., Chandler, J.A., Herman, L. (1974) Localization of calcium in the smooth endoplasmic reticulum of rat isolated fact cells. J. Cell Sci.15, 1–15

    Google Scholar 

  • Hasselbach, W. (1972) The sarcoplasmic calcium pump. In: Molecular bioenergetics and macromolecular biochemistry, pp. 149–171, Weber, H.H., ed. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hepler, P.K., Jackson, W.T. (1969) Isopropyl-N-phenyl carbamate affects spindle microtubule orientation in dividing endosperm cells ofHaemanthus katherinae Baker. J. Cell Sci.5, 727–743

    Google Scholar 

  • Hepler, P.K. (1977) Membranes in the spindle apparatus: Their possible role in the control of microtubule assembly. In: Mechanism and control of cell division, pp. 212–232, Rost, T.L., Gifford, E.M., Jr., eds., Hutchinson & Ross, Stroudsburg Dowden

    Google Scholar 

  • Hess, F.D., Bayer, E.D. (1974) The effect of trifluralin on the ultrastructure of dividing cells of the root meristem of cotton (Gossypium hirsutum L. Acala 4-42). J. Cell Sci.15, 429–442

    Google Scholar 

  • Hess, F.D., Bayer, D.E. (1977) Binding of the herbicide trifluralin toChlamydomonas flagellar tubulin. J. Cell Sci.24, 351–360

    Google Scholar 

  • Kiermayer, O., Fedtke, C. (1977) Strong anti-microtubule action of amiprophosmethyl (APM) inMicrasterias. Protoplasma92, 163–166

    Google Scholar 

  • Lehninger, A.L., Carafoli, E., Rossi, C.S. (1967) Energy-linked ion movements in mitochondrial systems. Adv. Enzymol.29, 259–321

    Google Scholar 

  • Marcum, J.M., Dedman, J.R., Brinkley, B.R., Means, A.R. (1978) Control of microtubule assembly-disassembly by calcium-dependent regulator protein. Proc. Natl. Acad. Sci. USA75, 3771–3775

    Google Scholar 

  • Margolis, R.L., Wilson, L. (1977) Adition of colchicine-tubulin complex to microtubule ends: The mechanism of substoichiometric colchicine poisoning. Proc. Natl. Acad. Sci. USA74, 3466–3470

    Google Scholar 

  • Margolis, R.L., Wilson, L. (1978) Opposite end assembly and disassembly of microtubules at steady state in vitro. Cell13, 1–8

    Google Scholar 

  • Martonosi, A. (1972) Biochemical and clinical aspects of sarcoplasmic reticulum function. In: Current topics in membrane transport, vol. 3, pp. 83–197, Bronner, F., Kleinzeller, A., eds. Academic Press, New York London

    Google Scholar 

  • Nishida, E., Kumagai, H., Ohtsuki, I., Sakai, H (1979) The interaction of cyclic nucleotide phosphodiesterase and microtubule proteins. J. Biochem.85, 1257–1266

    Google Scholar 

  • Olmsted, J.B., Borisy, G.G. (1975) Ionic and nucleotide requirements for microtubule polymerization in vitro. Biochemistry14, 2996–3005

    Google Scholar 

  • Quader, H., Cherniak, J., Filner, P. (1977) Chemically induced shortening of flagella ofChlamydomonas reinhardii. Plant Physiol. [Suppl.]59, 19

    Google Scholar 

  • Quader, H., Filner, P. (1980) The action of antimitotic herbicides upon the integrity of the flagellae inChlamydomonas reinhardtii. A comparison with the action of colchicin. Eur. J. Cell Biol.21, 301–304

    Google Scholar 

  • Robinson, D.G., Herzog, W. (1977) Structure, synthesis and orientation of microfibrils. III. A survey of the action of microtubule inhibitors on microtubule and microfibril orientation inOocystis solitaria. Cytobiology15, 463–474

    Google Scholar 

  • Rosenfeld, A.C., Zackroff, R.V., Weisenberg, R.C. (1976) Magnesium stimulation of calcium binding to tubulin and calcium induced depolymerization of microtubules. FEBS Lett.65, 144–147

    Google Scholar 

  • Schatzmann, H. (1966) ATP-dependent Ca2+ extrusion from human man red cells. Experientia22, 364–365

    Google Scholar 

  • Schliwa, M. (1976) The role of divalent cations in the regulation of microtubule assembly. In vivo studies in microtubules of the heliozoan axopodium using the ionophore A 23187. J. Cell Biol.70, 527–540

    Google Scholar 

  • Spector, T. (1978) Refinement of the Coomassie blue method of protein quantitation. Anal. Biochem.86, 142–146

    Google Scholar 

  • Upadhyaya, M.K., Nooden, L.D. (1977) Mode of dinitroaniline herbicide action. I. Analysis of the colchicine-like effects of dinitroaniline herbicides. Plant Cell Physiol.18, 1319–1330

    Google Scholar 

  • Weisenberg, R.C. (1972) Microtubule formation in vitro in solutions containing low calcium concentrations. Science177, 1104–1105

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hertel, C., Quader, H., Robinson, D.G. et al. Anti-microtubular herbicides and fungicides affect Ca2+ transport in plant mitochondria. Planta 149, 336–340 (1980). https://doi.org/10.1007/BF00571167

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00571167

Key words

Navigation