Skip to main content
Log in

Influence of velocity and surface temperature of alumina particles on the properties of plasma sprayed coatings

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In this paper are described the main characteristics of the plasma spraying process of alumina deposits, i.e., the temperature and flow field of the plasma jets obtained with the classical spraying torches, the injection of the particles into the plasma jet, the particle surface temperature and velocities in the plasma (measured for calibrated alumina particles), and the coating generation. The measurements on the alumina particles are compared with the predictions of a mathematical model. The experimental and computed particle velocities are in rather good agreement. However, this is not the case for the particle surface temperature. Possible reasons for the discrepancy are proposed (influence of the carrier gas, thermophoretic forces, and poor penetration of the particles into the plasma core even for an injection velocity twice that of the optimal calculated one, as shown by recent measurements). Finally the correlations between the particle velocities and surface temperature, and the properties of the alumina coating (porosity, crystal structure, mechanical properties) are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Zaat,Proceedings of the 9th International Thermal Spraying Conference, La Haye, May 23–29, 1980.

  2. N. N. Rykalin and V. V. Kudinov,Pure Appl. Chem. 48, 229 (1976).

    Google Scholar 

  3. J. L. Besson, M. Vardelle, and P. Boch,Ind. Ceram. 727, 248 (1979).

    Google Scholar 

  4. A. Vardelle, P. Fauchais, and M. Vardelle, Projection de revêtements protecteurs par plasma, Actual.Chim. 10, 69 (1981).

    Google Scholar 

  5. R. M. Gage, Arc torches and process, U.S. Patent No. 2, 806, 124 (1957).

  6. E. Pfender, Electric arcs and gas heaters, inGasesous Electronics, Vol. 1, M. N. Hirsch and H. J. Oskam, eds., Academic Press, New York (1978), p. 291.

    Google Scholar 

  7. F. Kassabji and P. Fauchais,Rev. Phys. Appl. 16, 549 (1981).

    Google Scholar 

  8. M. Vardelle, Etude de la structure des dépôts d'alumine obtenus par projection plasma en fonction des températures et des vitesses des particules au moment de leur impact sur la cible, Thèse de 3ème cycle, Université de Limoges, March 26 (1980).

  9. A. Vardelle, J. M. Baronnet, M. Vardelle, and P. Fauchais,IEEE Trans. Plasma Sci. 8, 417 (1980).

    Google Scholar 

  10. J. M. Baronnet, Contribution à l'étude spectroscopique des plasmas d'azote produits par un générateur à arc soufflé; application à la chimie des plasmas: synthèse des oxydes d'azote, Thèse d'Etat, Université de Limoges, November (1978).

  11. E. Bourdin, P. Fauchais, and M. Boulos, Transient heat conduction under plasma conditions,Int. J. Heat Mass Transf. (1982), accepted for publication.

  12. M. Vardelle, A. Vardelle, J. L. Besson, and P. Fauchais,Rev. Phys. Appl. 16, 425 (1981).

    Google Scholar 

  13. C. Gorse, Contribution au calcul des propriétés de transport des plasmas des mélanges argon-hydrogène et argon-azote, Thèse de 3ème cycle, Université de Limoges, September 9 (1975).

  14. E. Bourdin, Contribution à l'étude théorique et expérimentale des nitrures et d'oxynitrures par réactions de jets de plasma d'azote avec des poudres d'aluminium et de silicium et leurs oxydes, Thèse de 3ème cycle, Université de Limoges, March 16 (1976).

  15. M. Boulos,IEEE Trans. Plasma Sci. PS-6, 93 (1978).

    Google Scholar 

  16. T. Yoshida and K. Akashi,J. Appl. Phys. 48, 2252 (1977).

    Google Scholar 

  17. W. D. Murray and F. Landis,Heat Transf. 81, 106 (1959).

    Google Scholar 

  18. P. Jamet and R. Bonnerot,Int. J. Numer. Methods Eng. 8, 811 (1974).

    Google Scholar 

  19. M. Vardelle, A. Vardelle, P. Fauchais, and M. I. Boulos, Plasma-particle momentum and heat transfer: modelling and measurements,AIChE J. (1982), accepted for publication.

  20. Y. C. Lee, K. C. Hsu, and E. Pfender, Modelling of particles injected into a D.C. plasma jet, inProceedings of the 5th International Symposium on Plasma Chemistry, Heriot Watt University, Edinburgh, August 10–14, 1981, p.795.

    Google Scholar 

  21. J. J. Houben, Remarks concerning a rational plasma for thermal spraying,Proceedings of the 9th International Thermal Spraying Conference, La Haye, May 19–23, 1980, p. 143.

  22. J. Madejski,Int. J. Heat Mass Transf. 19, 1003 (1976).

    Google Scholar 

  23. J. Madejski,Bull. Acad. Pol. Sci. 24, No. 1 (1976).

    Google Scholar 

  24. P. Fauchais, E. Bourdin, J. F. Coudert, and R. McPherson, High pressure plasmas and their application to ceramic technology, inPlasma Chemistry, Vol. 3, M. Venugopalan and S. Veprek, eds., Springer-Verlag, Berlin (1982), to be published.

    Google Scholar 

  25. H. Jones,Rep. Prog. Phys. 36, 1425 (1973).

    Google Scholar 

  26. P. Zoltowski,Rev. Int. Htes Temp. Refract. 6, 65 (1968).

    Google Scholar 

  27. R. McPherson,J. Mater. Sci. 8, 851 (1973).

    Google Scholar 

  28. T. W. Sokolova, I. R. Kozlova, Kh. Derko, and A. V. Kiiko,Izv. Akad. Nauk SSSR Neorg. Mater. 9, 611 (1973).

    Google Scholar 

  29. F. Eichorn, J. Metzler, and W. Eysel,Metallorberflaeche 26, 212 (1972).

    Google Scholar 

  30. J. B. Kaffachine and A. G. Thomas,Powder Met. 7, 290 (1964).

    Google Scholar 

  31. V. S. Thompson and O. J. Whittemdre,Ceram. Bull. 47, 637 (1968).

    Google Scholar 

  32. H. S. Ingham and A. D. Shepard,Mecto Flame Spraying Handbook (1965).

  33. B. S. Mitin and Yu. A. Nagibin,Izv. Akad. Nauk SSSR, Neorg. Mater. 7, 814 (1971).

    Google Scholar 

  34. S. K. Kitahara and A. Hasni,J. Vac. Sci. Technol. 4, 142 (1974).

    Google Scholar 

  35. J. Guyonnet, Brevet C.N.R.S. 124111 et additifs 168044 et 7044678.

  36. R. McPherson,J. Mater. Sci. 15, 3141 (1980).

    Google Scholar 

  37. J. F. Coudert, J. M. Baronnet, A. Catherinot, and P. Fauchais, Time-resolved measurements of rotational temperature in a N2/O2 D.C. plasma jet,Seventh International Conference on Gas Discharges and Their Applications. London, August 31 to September 3, 1982.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vardelle, A., Vardelle, M. & Fauchais, P. Influence of velocity and surface temperature of alumina particles on the properties of plasma sprayed coatings. Plasma Chem Plasma Process 2, 255–291 (1982). https://doi.org/10.1007/BF00566524

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00566524

Key words

Navigation