Skip to main content
Log in

Nanocomposites in mullite-ZrO2 and mullite-TiO2 systems synthesised through alkoxide hydrolysis gel routes: microstructure and fractography

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The sol-gel process allows preparation of very homogeneous and reactive monolithic, optically clear gels. Low-temperature thermal treatments (700–1000 °C) lead to amorphous optically clear samples (“glass”). Amorphous mullite compositions (0.4Al2O3-0.6SiO2 to 0.8Al2O3-0.2SiO2) retain large amounts of Ti and Zr elements. The crystallization has been studied by differential thermal analysis, dilatometry, X-ray and electron diffraction and Raman scattering. The nucleation begins above 1000 °C with the departure of the last protonic species, the amorphous matrix being completely crystallized only above 1400 °C. The addition of Zr and Ti elements leads to a homogeneous nucleation of phases with a composition close to ZrO2 and Al2Ti3O9 (EDX analysis) above the solubility limit. TEM and SEM analyses show that the precipitate size remains submicrometric over a wide temperature range (1000–1400 °C) and consequently glass-like mechanical properties, as well as toughening effects, caused by the presence of nanoprecipitates, are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. C. Klein (Ed.), “Sol-gel Technology” (Noyes, NJ, 1988).

    Google Scholar 

  2. Ph. Colomban,Ceram. Int. 15 (1989) 23–50.

    Article  Google Scholar 

  3. Idem., J. Mater. Sci. 24 (1989) 3002.

    Article  CAS  Google Scholar 

  4. Idem., Ibid. 24 (1989) 3011.

    Article  CAS  Google Scholar 

  5. Idem., “Proceedings of the 2nd International Conference on Powder Science and Technology”, Berchtesgaden 12–14 October 1988, edited by G. D. Messing, E. R. Fuller Jr and H. Hausner (American Ceramic Society, Westerville, Ohio, 1989) pp. 85–92.

    Google Scholar 

  6. Ph. Colomban andL. Mazerolles,J. Mater. Sci. Lett. 9 (1990) 1077.

    Article  CAS  Google Scholar 

  7. W. E. Cameron,Amer. Mineral. 62 (1977) 745.

    Google Scholar 

  8. H. Schneider,Ceram. Int. 13 (1987) 77.

    Article  CAS  Google Scholar 

  9. R. F. Davis andJ. A. Pask, in “High Temperature Oxides”, edited by A. M. Alper (Academic Press, 1971) pp. 37–76.

  10. S. Prochazka, J. S. Wallace andN. Claussen,J. Amer. Ceram. Soc. 66 (1983) C. 125.

    Article  Google Scholar 

  11. A. Makishima, H. Ooshaski, M. Wakakawa, T. Shimohira andK. Kotami,J. Non-Cryst. Solids 42 (1980) 545.

    Article  CAS  Google Scholar 

  12. H. Okamura, E. A. Barringer andH. K. Bowen,J. Mater. Sci. 24 (1989) 1867.

    Article  CAS  Google Scholar 

  13. Ph. Colomban, “Ceramics Today, Tomorrow's Ceramics”, edited by P. Vincenzini (Elsevier) to be published.

  14. I. M. Low andR. McPherson,J. Mater. Sci. 24 (1989) 926.

    Article  CAS  Google Scholar 

  15. Idem., ibid,24 (1989) 951.

    Article  CAS  Google Scholar 

  16. K. Okada andN. Otsuka,J. Amer. Ceram. Soc. 69 (1986) 652.

    Article  CAS  Google Scholar 

  17. Idem., Sci. Ceram. 14 (1989) 497.

    Google Scholar 

  18. S. Sen andS. Thiagarajan,Ceram. Int. 14 (1988) 77.

    Article  CAS  Google Scholar 

  19. P. McMillan andB. Piriou,J. Non-Cryst. Solids 53 (1982) 279.

    Article  CAS  Google Scholar 

  20. I. W. Brown, K. J. D. McKenzie, M. E. Bowden andR. H. Meinhold,J. Amer. Ceram. Soc. 68 (1985) 298.

    Article  CAS  Google Scholar 

  21. O. Yamaguchi andY. Mukaida,ibid. 72 (1989) 330.

    Article  CAS  Google Scholar 

  22. H. Knoll,Naturwiss. 48 (1961) 601.

    Article  Google Scholar 

  23. S. P. S. Porto, P. A. Fleury andT. C. Damen,Phys. Rev. 154 (1964) 522.

    Article  Google Scholar 

  24. U. Balachandran andN. G. Eror,J. Solid State Chem. 42 (1982) 276.

    Article  CAS  Google Scholar 

  25. C. A. Melendres, A. Narayanasmi, V. A. Maroni andR. W. Siegel,J. Mater. Res. 4 (1989) 1246.

    Article  CAS  Google Scholar 

  26. International Centre for Diffraction Data no. 9-182 (FeTiO5) and 26–40 (Al2TiO5).

  27. D. Goldberg, Thesis, Paris (1968).

  28. P. A. Brugger andA. Mocellin,J. Mater. Sci. 21 (1986) 4431.

    Article  CAS  Google Scholar 

  29. T. Y. Pan, R. E. Robertson andF. E. Filisko,ibid. 23 (1988) 2553.

    Article  CAS  Google Scholar 

  30. Idem., ibid. 24 (1989) 3635.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colomban, P., Mazerolles, L. Nanocomposites in mullite-ZrO2 and mullite-TiO2 systems synthesised through alkoxide hydrolysis gel routes: microstructure and fractography. J Mater Sci 26, 3503–3510 (1991). https://doi.org/10.1007/BF00557138

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00557138

Keywords

Navigation