Skip to main content
Log in

Recovery in cold-worked alloy under pressure: example of AISI 316 stainless steel

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, we report the behaviour of defects under high pressure in severely cold-deformed 316 stainless steel. In situ electrical resistivity measurements indicate a minimum in the reduced resistivity ratio at 2 GPa associated with a characteristic relaxation time of 500±5 sec. Microhardness data on pressure-treated and recovered samples are consistent with the electrical resistivity behaviour. X-ray powder diffraction rings indicate sharpening beyond 2GPa. The decrease in the full width at half maximum (FWHM) of the strongest ring is about 2% at pressures beyond 2 GPa. Transmission electron microscopy reveals that samples pressure-treated beyond 2 GPa have a polygonized dislocation structure. This is in sharp contrast to the tangled dislocation structure observed in the cold-worked samples. The experimental results suggest a recovery stage in cold-worked stainless steel at 2 GPa. We propose that the recovery process is activated through an enhanced vacancy concentration caused by deformation, a pressure-induced vacancy-dislocation interaction and consequently a pressure-assisted dislocation mobility leading to polygonization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. L. Kulcinski, Phys. Rev. 179 (1969) 676.

    Google Scholar 

  2. T. Egami, J. Mater. Sci. 13 (1978) 2587.

    Google Scholar 

  3. Mohammad Yousuf and K. Govinda Rajan, J. Mater. Sci. Lett. 3 (1984) 149.

    Google Scholar 

  4. P. Ch. Sahu, Mohammad Yousuf and K. Govinda Rajan, in Proceedings of Workshop on Actinides under Pressure, EITU, Karlsruhe, FRG (1983).

    Google Scholar 

  5. K. Govinda Rajan, Curr. Sci. 53 (1984) 1115.

    Google Scholar 

  6. J. M. Ziman, in “The Physics of Metals”, Vol. 1, edited by J. M. Ziman (Cambridge University Press, Cambridge, 1969) p. 250.

    Google Scholar 

  7. P. G. Shewmon, “Transformation in Metals” (McGraw-Hill, New York, 1969) p. 71.

    Google Scholar 

  8. J. M. Ziman, “Electrons and Phonons” (Clarendon Press, Oxford, 1960) p. 341.

    Google Scholar 

  9. Idem, “Electrons and Phonons” (Clarendon Press, Oxford, 1960) p. 350.

    Google Scholar 

  10. H. Wever, O. Seydel and G. Frohberg, in “Point Defects and Defect Interactions in Metals”, edited by J. Takamura, M. Doyama and M. Kiritani (Tohoku University, Tohoku, 1982) p. 512.

    Google Scholar 

  11. V. Seetharaman and R. Krishnan, J. Mater. Sci. 16 (1981) 523.

    Google Scholar 

  12. V. S. Sastry, R. Khanna and K. Govinda Rajan, Rev. Sci. Instrum. 53 (1982) 1484.

    Google Scholar 

  13. Ph. Schaufelberger, H. Merx and M. Contre, High Temp. High Press. 5 (1973) 221.

    Google Scholar 

  14. C. Y. Liu, K. Ishizaki, J. Paauwe and I. L. Spain, ibid. 5 (1973) 359.

    Google Scholar 

  15. G. L. Kinsland, ibid. 10 (1978) 652.

    Google Scholar 

  16. A. K. Singh, ibid. 10 (1978) 641.

    Google Scholar 

  17. K. Varatharajan and R. V. Nandedkar, Bull. Electron Micros. Soc. India 2 (1978) 121.

    Google Scholar 

  18. R. A. Johnson Jr, Phys. Rev. 145 (1966) 423.

    Google Scholar 

  19. J. R. Beeler, ibid. 150 (1966) 470.

    Google Scholar 

  20. V. S. Raghunathan and B. D. Sharma, Phil. Mag. 43A (1981) 427.

    Google Scholar 

  21. F. H. Wohlbier (ed.), “Diffusion and Defect Data” Vol. 14 (Trans Tech Publications, Ohio, 1976) p. 47.

    Google Scholar 

  22. L. A. Girifalco, “Statistical Physics of Materials,” (Wiley, New York, 1973) p. 260.

    Google Scholar 

  23. L. A. Girifalco and D. O. Welch, “Point Defects and Diffusion in Strained Metals” (Gordon and Breach, New York, 1967) p. 32.

    Google Scholar 

  24. F. Pring, A. S. Argon and W. C. Moffatt, Acta Metall. 30 (1982) 821.

    Google Scholar 

  25. R. E. Smallman, in “Modern Physical Metallurgy” (Butterworths, London, 1970).

    Google Scholar 

  26. P. B. Hirsch, in “The Physics of Metals”, edited by P. B. Hirsch (Cambridge, 1975) Vol. 2.

  27. P. G. Shewmon, “Transformation in Metals” (McGraw-Hill, New York, 1969) p. 71.

    Google Scholar 

  28. R. W. Cahn, in Proceedings of the Conference on Dislocations and Properties of Real Materials, Metallurgical Society, London, December 1984 (in press).

    Google Scholar 

  29. J. Friedel, in “Physics of Defects”, edited by R. Balian, M. Kleman and J. Poirier (North-Holland, Amsterdam, 1981) p. 1.

    Google Scholar 

  30. S. V. Ramani, P. Mukhopadhyay, P. Rodriguez and R. Krishnan, in “International Symposium on Defect Interactions in Solids”, edited by K. I. Vasu, K. S. Raman, D. H. Sastry and Y. V. R. K. Prasad (Indian Institute of Sciences, Bangalore, 1972) p. 346.

    Google Scholar 

  31. J. M. Ziman, “Models of Disorder” (Cambridge University Press, Cambridge, 1979) p. 53.

    Google Scholar 

  32. G. Borelius, in Report of 9th Salvay Conference (1952) p. 427.

  33. A. H. Cottrell, “Dislocation and Plastic Flow in Crystals” (Clarendon Press, Oxford, 1963) p. 188.

    Google Scholar 

  34. S. S. Gorelik, “Recrystallization in Metals and Alloys” (Mir Publications, Moscow, 1981) p. 86.

    Google Scholar 

  35. H. G. Van Bueren, “Imperfections in Crystals” (North-Holland, Amsterdam, 1960).

    Google Scholar 

  36. A. H. Cottrell, “Dislocations and Plastic Flow in Crystals” (Clarendon Press, Oxford, 1963) p. 187.

    Google Scholar 

  37. R. Bullough, “The Theory of Imperfect Crystalline Solids — Trieste Lectures” (IAEA, Vienna, 1971) p. 143.

    Google Scholar 

  38. M. Brandes, in “Mechanical Behaviour of Materials Under Pressure”, edited by H. Le and D. Pugh (Elsevier, London, 1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yousuf, M., Sahu, P.C., Raghunathan, V.S. et al. Recovery in cold-worked alloy under pressure: example of AISI 316 stainless steel. J Mater Sci 21, 1956–1962 (1986). https://doi.org/10.1007/BF00547933

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00547933

Keywords

Navigation