Skip to main content

Advertisement

Log in

Elevated temperature slow plastic deformation of NiAl-TiB2 particulate composites at 1200 and 1300K

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Elevated temperature compression testing has been conducted in air at 1200 and 1300K with strain rates varying from ∼10−4 to ∼10−7sec−1 on NiAl-TiB2 particulate composites. These materials, which consisted of a B2 crystal structure intermetallic Ni-50at% Al matrix and from 0 to 30 vol % of approximately 1 μm diameter TiB2 particles, were fabricated by XD synthesis and hot pressed to full density. Flow strength of the composites increased with volume fraction of the strengthening phase with NiAl-30TiB2 being approximately three times stronger than NiAl. Comparison of the light optical and transmission electron microstructures of asreceived and tested samples revealed that reactions did not occur between the two phases, and NiAl-TiB2 interfaces were not cracked during deformation. Additional transmission electron microscopy indicated that the particles stabilize a vastly different microstructure in the NiAl matrix of the composites than that formed in unreinforced NiAl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. E. M. Grala, in “Mechanical Properties of Intermetallic Compounds”, edited by J. H. Westbrook (Wiley, New York, 1960) pp. 358–404.

    Google Scholar 

  2. A. G. Rozner and R. J. Wasilewski, J. Inst. Met. 94 (1966) 169–175.

    Google Scholar 

  3. A. Ball and R. E. Smallman, Acta Metall. 14 (1966) 1349–1355.

    Google Scholar 

  4. R. R. Vandervoort, A. K. Mukherjee and J. E. Dorn, Trans. ASM 59 (1966) 930–944.

    Google Scholar 

  5. L. A. Hocking, P. R. Strutt and R. D. Dodd, J. Inst. Met. 99 (1971) 98–101.

    Google Scholar 

  6. W. J. Yang and R. A. Dodd, Met. Sci J. 7 (1973) 41–47.

    Google Scholar 

  7. J. D. Whittenberger, Mater. Sci. Engng 57 (1983) 77–85.

    Google Scholar 

  8. Idem, J. Mater. Sci. 22 (1987) 394–402.

    Google Scholar 

  9. Idem, ibid. 23 (1987) 235–240.

    Google Scholar 

  10. Idem, NASA, TM 101382 (1988).

  11. K. Vedula, V. Pathare, I. Aslanidis and R. H. Titran, in “High-Temperature Ordered Intermetallic Alloys”, edited by C. C. Koch, C. T. Liu and N. S. Stoloff, (Materials Research Society, Pittsburgh, PA, 1984) pp. 411–21.

    Google Scholar 

  12. M. Sherman and K. Vedula, J. Mater. Sci 21 (1986) 1974–1980.

    Google Scholar 

  13. R. K. Viswanadham, S. K. Mannan and B. Sprissler, “Nickel Aluminide/Titanium Diboride Composites” Martin Marietta Laboratories TR 87-66c, 1987.

  14. J. R. Ramberg and W. S. Williams, J. Mater. Sci. 22 (1987) 1815–1826.

    Google Scholar 

  15. D. Broussaud, H. Pastor, R. Meyer and A. Accary, in “Modern Developments in Powder Metallurgy”, edited by H. H. Hausner and W. E. Smith, (Metal Powder Industries Federation & American Powder Metallurgy Institute, Princeton, NJ, 1974) pp. 589–603.

    Google Scholar 

  16. J. D. Whittenberger, Mater. Sci. Engng 73 (1985) 87–96.

    Google Scholar 

  17. R. W. Clark and J. D. Whittenberger, “Thermal Expansion 8”, edited by T. A. Hahn (Plenum Press, New York, 1984) pp. 189–96.

    Google Scholar 

  18. High Temperature Materials — Mechanical, Electronic and Thermophysical Properties Information Analysis Center, Purdue University, West Lafayette, IN 47906.

  19. L. M. Brown, in “Fatigue and Creep of Composite Materials”, edited by H. Lilholt and R. Talreja, (Riso National Laboratory, Roskilde, Denmark, 1982) pp. 1–18.

    Google Scholar 

  20. O. D. Sherby, R. H. Klundt and A. K. Miller, Met. Trans 8A (1977) 843–850.

    Google Scholar 

  21. S. V. Raj and G. M. Pharr, Mater. Sci. Engng 81 (1986) 217–237.

    Google Scholar 

  22. D. L. Bacon, U. F. Kocks and R. O. Scattergood, Phil. Mag. 28 (1973) 1241–1263.

    Google Scholar 

  23. R. W. Lund and W. D. Nix, Acta Metall. 24 (1976) 469–481.

    Google Scholar 

  24. M. R. Harmouche and A. Wolfenden, J. Test. Eval. 15 (1987) 101–104.

    Google Scholar 

  25. S. V. Raj, Scripta Metall. 20 (1986) 1333–1338.

    Google Scholar 

  26. C. A. Barrett, “The Effect of 0.1 Atomic Percent Zirconium on the Cyclic Oxidation Resistance of β-NiAl”, submitted to Ox. of Metals.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whittenberger, J.D., Viswanadham, R.K., Mannan, S.K. et al. Elevated temperature slow plastic deformation of NiAl-TiB2 particulate composites at 1200 and 1300K. J Mater Sci 25, 35–44 (1990). https://doi.org/10.1007/BF00544181

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00544181

Keywords