Skip to main content
Log in

The incorporation of ambipolar diffusion in deformation mechanism maps for ceramics

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ambipolar diffusion gives rise to four distinct types of diffusion creep in ceramic materials, depending on whether the processes of lattice and grain-boundary diffusion creep are controlled by the anions or cations, respectively. These four processes are incorporated in a deformation mechanism map for diffusion creep in pure Al2O3, using a new form of map which is independent of the selected stress level. This map may be used to determine the rate-controlling mechanism for diffusion creep under any selected experimental conditions. By superimposing dislocation creep on to the map, it is possible to estimate the highest permissible stress and the lowest feasible temperature for experimental observation of any of the diffusion creep processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. F. Ashby, Acta Met. 20 (1972) 887.

    Google Scholar 

  2. A. G. Guy, “Essentials of Materials Science” (McGraw-Hill, New York, 1976) p. 324.

    Google Scholar 

  3. R. W. Hertzberg, “Deformation and Fracture Mechanics of Engineering Materials” (John Wiley, New York, 1976) p. 156.

    Google Scholar 

  4. W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to Ceramics,” 2nd edition (John Wiley, New York, 1976) p. 745.

    Google Scholar 

  5. B. Ilschner, “Hochtemperatur-Plastizität”, Reine und angewandte Metallkunde in Einzeldarstallungen, Vol. 23 (Springer-Verlag, Berlin, 1973) p. 258.

    Google Scholar 

  6. J. Gittus, “Creep, Viscoelasticity and Creep Fracture in Solids” (John Wiley, New York, 1975) p. 274

    Google Scholar 

  7. J. -P. Poirier, “Plasticité à Haute Température des Solides Cristallins” (Eyrolles, Paris, 1976) p. 156.

    Google Scholar 

  8. A. Nicolas and J. -P. Poirier, “Crystalline Plasticity and Solid State Flow in Metamorphic Rocks” (John Wiley, London, 1976) p. 403.

    Google Scholar 

  9. J. Weertman and J. R. Weertman, “Physical Metallurgy,” edited by R. W. Calnn (North-Holland, Amsterdam, 1965) p. 793.

    Google Scholar 

  10. J. Weertman, Trans. ASM 61 (1968) 681.

    Google Scholar 

  11. F. A. Mohamed and T. G. Langdon, Met. Trans. 5 (1974) 2339.

    Google Scholar 

  12. P. A. Urick and M. R. Notis, J. Amer. Ceram. Soc. 56 (1973) 570.

    Google Scholar 

  13. M. R. Notis, Powder Met. Intl. 6 (1974) 82.

    Google Scholar 

  14. M. R. Notis, R. H. Smoak and V. Krish-Namachari, Mater. Sci. Res. 10 (1975) 493.

    Google Scholar 

  15. R. L. Stocker and M. F. Ashby, Rev. Geophys. Space Phys. 11 (1973) 391.

    Google Scholar 

  16. J. Weertman and J. R. Weertman, Ann. Rev. Earth and Planetary Sci. 3 (1975) 293.

    Google Scholar 

  17. M. F. Ashby, J. Geol. Soc. 132 (1976) 558.

    Google Scholar 

  18. M. R. Notis, J. Amer. Ceram. Soc. 57 (1974) 271.

    Google Scholar 

  19. B. K. Atkinson, Earth and Planetary Sci. Let. 29 (1976) 210.

    Google Scholar 

  20. V. Krishnamachari and M. R. Notis, Mater. Sci. Eng. 27 (1977) 83.

    Google Scholar 

  21. R. N. Singh, J. Nuclear Mater. 64 (1977) 167.

    Google Scholar 

  22. J. T. A. Roberts and J. C. Voglewede, J. Amer. Ceram. Soc. 56 (1973) 472.

    Google Scholar 

  23. M. F. Ashby and H. J. Frost, “Constitutive Equations in Plasticity,” edited by A. S. Argon (MIT Press, Cambridge, Mass., 1975) p. 117.

    Google Scholar 

  24. T. G. Langdon and F. A. Mohamed, J. Mater. Sci. 11 (1976) 317.

    Google Scholar 

  25. F. R. N. Nabarro, “Report of a Conference on Strength of Solids” (The Physical Society, London, 1948) p. 75.

    Google Scholar 

  26. C. Herring, J. Appl. Phys. 21 (1950) 437.

    Google Scholar 

  27. R. L. Coble, 34 (1963) 1679.

    Google Scholar 

  28. R. S. Gordon, J. Amer. Ceram. Soc. 56 (1973) 147.

    Google Scholar 

  29. R. S. Gordon and J. D. Hodge, J. Mater. Sci. 10 (1975) 200.

    Google Scholar 

  30. R. S. Gordon, “Mass Transport Phenomena in Ceramics,” edited by A. R. Cooper and A. H. Heuer (Plenum Press, New York, 1975) p. 445.

    Google Scholar 

  31. T. G. Langdon and F. A. Mohamed, Mater. Sci. Eng. 32 (1978) 103.

    Google Scholar 

  32. A. G. Evans and T. G. Langdon, Prog. Mater. Sci. 21 (1976) 171.

    Google Scholar 

  33. A. E. Paladino and W. D. Kingery, J. Chem. Phys. 37 (1962) 957.

    Google Scholar 

  34. R. M. Cannon and R. L. Coble, “Deformation of Ceramic Materials,” edited by R. C. Bradt and R. E. Tressler (Plenum Press, New York, 1975) p. 61.

    Google Scholar 

  35. Y. Oishi and W. D. Kingery, J. Chem. Phys. 33 (1960) 480.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langdon, T.G., Mohamed, F.A. The incorporation of ambipolar diffusion in deformation mechanism maps for ceramics. J Mater Sci 13, 473–482 (1978). https://doi.org/10.1007/BF00541795

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00541795

Keywords

Navigation