Skip to main content
Log in

Creep of (Mg, Fe)O single crystals

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The creep behaviour of (Mg, Fe)O single crystals compressed along 〈1 0 0〉 has been investigated over the temperature range 1300 to 1500° C, at stresses between 20 and 70 MPa, for oxygen partial pressures between 10−4 and 102 Pa, and with iron concentrations between 70 and 11 900 p.p.m. Under these conditions, the dependence of the steady-state strain rate on stress, temperature, oxygen partial pressure, and iron concentration can be summarized by the flow law, \(\dot \varepsilon = A\sigma ^{3.4} \left[ {Fe_{Mg} } \right]_{tot}^0 P_{O_2 }^0 \)exp (−445 kJ mol−1/RT. These results suggest that the steadystate strain rate is controlled by dislocation climb with a jog velocity which is limited by lattice diffusion of oxygen by a vacancy pair mechanism. The activation energy for creep, 445 kJ mol−1 is larger than that reported for self-diffusion of oxygen, 330 kJ mol−1, because the formation energy for jogs is relatively large, 115 kJ mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. L. Cummerow, J. Appl. Phys. 34 (1963) 1724.

    Google Scholar 

  2. W. S. Rothwell and A. S. Neiman, ibid. 36 (1965) 2309.

    Google Scholar 

  3. Idem, Appl. Phys. Lett. 3 (1963) 160.

    Google Scholar 

  4. C. O. Hulse and J. A. Pask, J. Amer. Ceram. Soc. 43 (1960) 373.

    Google Scholar 

  5. P. C. Dokko and J. A. Pask, ibid. 62 (1979) 433.

    Google Scholar 

  6. W. Huether and B. Reppich, Phil. Mag. 28 (1973) 363.

    Google Scholar 

  7. J. M. Birch and B. Wilshire, ibid. 30 (1974) 1023.

    Google Scholar 

  8. Idem., ibid. 31 (1975) 1421.

    Google Scholar 

  9. A. H. Clauer and B. A. Wilcox, J. Amer. Ceram. Soc. 59 (1976) 89.

    Google Scholar 

  10. A. H. Clauer, M. S. Seltzer and B. A. Wilcox, ibid. 62 (1979) 85.

    Google Scholar 

  11. J. L. Routbort, Acta Metall. 27 (1979) 649.

    Google Scholar 

  12. P. J. Dixon-Stubbs and B. Wilshire, Trans. Brit. Ceram. Soc. 79 (1980) 21.

    Google Scholar 

  13. J. B. Bilde-Sorenson, J. Amer. Ceram. Soc. 55 (1972) 606.

    Google Scholar 

  14. B. Ilschner and B. Reppich, in “Defects and Transport in Oxides”, edited by M. S. Seltzer and R. I. Jaffe (Plenum, New York, 1975) p. 425.

    Google Scholar 

  15. R. L. Moon and P. L. Pratt, Proc. Brit. Ceram. Soc. 15 (1976) 203.

    Google Scholar 

  16. B. Reppich, Mater. Sci. Engng 22 (1976) 71.

    Google Scholar 

  17. J. M. Vieira and R. J. Brook, in “Structure and Properties of MgO and Al2O3 Ceramics”, edited W. D. Kingery (American Ceramics Society Inc., Columbus, 1984) p. 438.

    Google Scholar 

  18. G. W. Groves and M. E. Fine, J. Appl. Phys. 35 (1964) 3587.

    Google Scholar 

  19. R. W. Davidge, J. Mater. Sci. 2 (1967) 339.

    Google Scholar 

  20. M. Srinvasan and T. G. Stoebe, J. Appl. Phys. 41 [9] (1970) 3726.

    Google Scholar 

  21. E. W. Kruse and M. E. Fine, J. Amer. Ceram Soc. 55 (1972) 32.

    Google Scholar 

  22. W. E. Luecke and D. L. Kohlstedt, Ibid. 71 (1988) 189

    Google Scholar 

  23. K. W. Blazey, J. Phys. Chem. Solids 38 (1977) 671.

    Google Scholar 

  24. D. Dimos, PhD Thesis, Cornell University, Ithaca (1986).

    Google Scholar 

  25. S. J. Mackwell and D. L. Kohlstedt, Phys. Chem. Min. 13 (1986) 351.

    Google Scholar 

  26. D. L. Ricoult and D. L. Kohlstedt, J. Amer. Ceram. Soc. 69 (1986) 770.

    Google Scholar 

  27. W. H. Gourdin, W. D. Kingery and J. Drier, J. Mater. Sci. 14 (1979) 2074.

    Google Scholar 

  28. G. W. Hollenberg and R. S. Gordon, J. Amer. Ceram. Soc. 56 (1973) 140.

    Google Scholar 

  29. J. Cabrera-Cano, A. Dominiguez-Rodriguez, R. Marquez, J. Castaing and J. Philibert, Phil. Mag. 46 (1982) 397.

    Google Scholar 

  30. S. J. Mackwell, D. B. Dimos and D. L. Kohlstedt, ibid. A57 (1988) 779.

    Google Scholar 

  31. W. K. Chen and N. L. Peterson, J. Phys. Chem. Solids 41 (1980) 335.

    Google Scholar 

  32. P. A. Lessing, PhD Thesis, University of Utah, Salt Lake City (1976).

    Google Scholar 

  33. K. C. Goretta and J. C. Routbort, Acta Metall. 35 (1987) 1047.

    Google Scholar 

  34. K. Ando, Y. Kurokawa and Y. Oishi, J. Chem. Phys. 78 (1983) 6890.

    Google Scholar 

  35. A. F. Henriksen, Y. M. Chiang, W. D. Kingery and W. T. Petsukey, J. Amer. Ceram. Soc. 66 (1983) C144.

    Google Scholar 

  36. L. E. Dohlert, PhD Thesis, Massachusetts Institute of Technology, Boston (1985).

    Google Scholar 

  37. J. Weertman, Trans. ASM 61 (1968) 681.

    Google Scholar 

  38. D. L. Kohlstedt and D. L. Ricoult, in “Plastic Deformation of Ceramic Materials” edited R. C. Bradt and R. E. Tressler (Plenum, New York, 1974) p. 251.

    Google Scholar 

  39. D. L. Ricoult and D. L. Kohlstedt, Phil. Mag. A51 (1985) 79.

    Google Scholar 

  40. J. Friedel, “Dislocations” (Pergamon, Oxford, 1964).

    Google Scholar 

  41. R. W. Balluffi and A. V. Granato, in “Dislocations in Solids”, edited F. R. N. Nabarro (North-Holland, New York 1979) Vol. 4, p. 1.

    Google Scholar 

  42. J. Narayan and J. Washburn, Acta Metall. 21 (1973) 533.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolfenstine, J., Kohlstedt, D.L. Creep of (Mg, Fe)O single crystals. J Mater Sci 23, 3550–3557 (1988). https://doi.org/10.1007/BF00540494

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00540494

Keywords

Navigation