Skip to main content
Log in

Exponentially generated wave functions and excited states of benzene

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

Usefulness of the exponentially generated wave function approach is shown. We first give an overview of the SAC (symmetry adapted cluster) and SAC-CI study on the valence and Rydberg excitations and ionizations of benzene including both π and σ spaces. The importance of the σ reorganization effect is found for the T3(3B2u), S2(1B1u), and S3(1E1u) states, so-called V states. A first systematic calculation is reported for the Rydberg excited states. Next, the idea of the exponentially generated wave function (EGWF) theory is explained. New exponential-type operators and new wave functions associated with them are defined. The mixed or multi use of these exponential operators is shown to be effective both physically and practically. We call the resultant wave functions MEG (multi-exponentially generated) wave functions. We then explain the algorithm of calculations and show some results on the potential energy curves of the ground, excited, and quasi-degenerate states of some diatomics and triatomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nakatsuji H, Hirao K (1978) J Chem Phys 68:2053

    Google Scholar 

  2. Nakatsuji H (1978) Chem Phys Lett 59:362

    Google Scholar 

  3. Nakatsuji H (1979) Chem Phys Lett 67: 329, 334

    Google Scholar 

  4. Nakatsuji H (1985) J Chem Phys 83:713; see also Nakatsuji H, Hada M (1986) In: Smith VH, Schaefer HF, Morokuma K (eds) Applied quantum chemistry, p 93, New York, Reidel

    Google Scholar 

  5. Nakatsuji H (1985) J Chem Phys 83:5743

    Google Scholar 

  6. Kitao O, Nakatsuji H: to be submitted

  7. Coester F (1958) Nucl. Phys 7:421; Coester F, Kümmel H (1960) Nucl Phys 17:477

    Google Scholar 

  8. Sinanoglu O (1962) J Chem Phys 36:706, 3198; (1964) Adv Chem Phys 6:315

    Google Scholar 

  9. Primas H (1965) In: Sinanoglu O (ed) Modern quantum chemistry, vol II, p 45. New York, Academic Press

    Google Scholar 

  10. Cizek J (1966) J Chem Phys 45:4256; Cizek J (1969) Adv Chem Phys 14:35; Paldus J, Cizek J, Shavitt I (1972) Phys Rev A5:50; Paldus J (1983) In: Lödwin P-O, Pullman B (eds) New horizons of quantum chemistry, p 183. Dordrecht, Reidel

    Google Scholar 

  11. Mukherjee D, Moitra RK, Mukhopadhyay A (1975) Mol Phys 30:1861; (1977) 33:955

    Google Scholar 

  12. Bartlett RJ (1981) Annu Rev Phys Chem 32:359

    Google Scholar 

  13. Thouless DJ (1960) Nucl Phys 21:225

    Google Scholar 

  14. Nakatsuji H (1973) J Chem Phys 59:2586

    Google Scholar 

  15. Nakatsuji H, Hirao K (1977) Chem Phys Lett 47:569; (1978) J Chem Phys 68:4279

    Google Scholar 

  16. Nakatsuji H, Hirao K (1981) Int J Quantum Chem 20:1301

    Google Scholar 

  17. Hirao K, Hatano T (1983) Chem Phys Lett 100:519; (1984) 111:533

    Google Scholar 

  18. Hirao K, Nakatsuji H (1981) Chem Phys Lett 79:292

    Google Scholar 

  19. Nakatsuji H, Ohta K, Hirao K (1981) J Chem Phys 75:2952

    Google Scholar 

  20. Nakatsuji H (1983) Chem Phys 75:425

    Google Scholar 

  21. Nakatsuji H (1983) Int J Quantum Chem S17:241

    Google Scholar 

  22. Hirao K (1983) J Chem Phys 79:5000

    Google Scholar 

  23. Nakatsuji H (1984) J Chem Phys 80:3703

    Google Scholar 

  24. Hirao K (1984) J Am Chem Soc 106:6283

    Google Scholar 

  25. Nakatsuji H, Kitao O, Yonezawa T (1985) J Chem Phys 83:723

    Google Scholar 

  26. Nakatsuji H, Ushio J, Yonezawa T (1985) Can J Chem 63:1857

    Google Scholar 

  27. Kitao O, Nakatsuji H (1986) Proc Ind Acad Sci 96:155

    Google Scholar 

  28. Nakatsuji H, Hada M (1985) J Am Chem Soc 107:8264

    Google Scholar 

  29. Nakatsuji H, Yonezawa T (1982) Chem Phys Lett 87:426

    Google Scholar 

  30. Nakatsuji H (1983) Chem Phys 76:283

    Google Scholar 

  31. Hirao K, Kato H (1983) Chem Phys Lett 98:340

    Google Scholar 

  32. Nakatsuji H, Ohta K, Yonezawa T (1983) J Phys Chem 87:3068

    Google Scholar 

  33. Hirao K, Nakatsuji H (1978) J Chem Phys 69:4548

    Google Scholar 

  34. Ohta K, Nakatsuji H, Hirao K, Yonezawa T (1980) J Chem Phys 73:1770

    Google Scholar 

  35. Nakatsuji H (1985) Program system for SAC and SAC-CI calculations. Program Library No. 146 (Y4/SAC). Data Processing Center of Kyoto University

  36. Nakatsuji H (1986) Program Library SAC85 (No 1396), Computer Center of the Institute for Molecular Science, Okazaki, Japan

    Google Scholar 

  37. Hückel E (1931) Z Phys 70:206; (1931) 72:310; (1932) 76:628

    Google Scholar 

  38. Pauling L, Wheland GW (1933) J Chem Phys 1:362; (1934) 2:484

    Google Scholar 

  39. Goeppert-Mayer M, Sklar AL (1938) J Chem Phys 6:645

    Google Scholar 

  40. Pariser R, Parr RG (1953) J Chem Phys 21:466; (1953) 21:767

    Google Scholar 

  41. Pople JA (1953) Trans Faraday Soc 49:1375

    Google Scholar 

  42. Ohno K, Noro T (1986) In: Higuchi J (ed) Molecular electronic structure, p 83. Tokyo, Kyoritsu (in Japanese)

    Google Scholar 

  43. Buenker RJ, Whitten JL, Petke JD (1968) J Chem Phys 49:2261

    Google Scholar 

  44. Peyerimhoff SD, Buenker RJ (1970) Theor Chim Acta 19:1

    Google Scholar 

  45. Rose JB, Shibuya T, McKoy V (1974) J Chem Phys 60:2700

    Google Scholar 

  46. Hay PJ, Shavitt I (1973) Chem Phys Lett 22:33; (1974) J Chem Phys 60:2865

    Google Scholar 

  47. Rancural R, Huron B, Praud L, Malrieu PJ, Berthier G (1976) J Mol Spectrosc 60:259

    Google Scholar 

  48. Langseth A, Stoicheff BP (1956) Can J Phys 34:350

    Google Scholar 

  49. Huzinaga S (1965) J Chem Phys 42:1293; Dunning TH Jr (1970) J Chem Phys 53:2823

    Google Scholar 

  50. Dunning TH Jr, Hay PJ (1977) In: Schaefer HF (ed) Modern theoretical chemistry. New York, Plenum

    Google Scholar 

  51. Bender CF (1972) J Compt Phys 9:547

    Google Scholar 

  52. Yoshimine M (1978) In: Moler C, Shavitt I. (eds) Report on the workshop: Numerical algorithms in chemistry: Algebraic methods, p 142. Lawrence Berkeley Lab, University of California

  53. King HF, Dupuis M, Rys J (1979) Program Library HONDOG (No 343), Computer Center of the Institute for Molecular Science, Okazaki, Japan

    Google Scholar 

  54. Lassettre EN, Skerbele A, Dillon MA, Ross KJ (1968) J Chem Phys 48:5066; Doering J (1969) J Chem Phys 51:2866

    Google Scholar 

  55. Mulliken RS (1974) Chem Phys Lett 25:305; Iwata S, Freed KF (1974) J Chem Phys 61:1500

    Google Scholar 

  56. Schoemaker RL, Flygare WH (1969) J Chem Phys 51:2988

    Google Scholar 

  57. Huzinaga S (1962) J Chem Phys 36:453

    Google Scholar 

  58. Tanaka K (1972) Int J Quantum Chem 6:1087

    Google Scholar 

  59. McMurchie LE, Davidson ER (1977) J Chem Phys 66:2959; (1977) 67:5613

    Google Scholar 

  60. Brooks BR, Schaefer HF (1978) J Chem Phys 68:4839

    Google Scholar 

  61. Buenker RJ, Peyerimhoff SD, Shih S-K (1980) Chem Phys Lett 69:7

    Google Scholar 

  62. Wilkinson PG (1956) Can J Phys 34:596; Johnson PM (1976) J Chem Phys 64:4143; Whetten RL, Grubb SG, Otis CE, Albrecht AC, Grant ER (1985) J Chem Phys 82:1115; Grubb SG, Otis CE, Whetten RL, Grant ER, Albrecht AC (1985) J Chem Phys 82:1135

    Google Scholar 

  63. Von Niessen W, Cederbaum LS, Kraemer WP (1976) J Chem Phys 65:1378; Cederbaum LS, Domcke W, Schirmer J, Von Niessen W, Diercksen GHF, Kraemer WP (1978) J Chem Phys 69:1591

    Google Scholar 

  64. Jonsson B-Ö, Lindholm E (1969) Ark Fys 39:65; Fridh C, Asbrink L, Lindholm E (1972) Chem Phys Lett 15:282

    Google Scholar 

  65. Potts AW, Price WC, Streets DG, Williams TA (1972) Faraday Disc Chem Soc 54:168

    Google Scholar 

  66. Jeziorski B, Monkhorst HJ (1981) Phys Rev A24:1668

    Google Scholar 

  67. Nakatsuji H: to be published

  68. Siegbahn P, Heiberg A, Roos B, Levy B (1980) Phys Scrip 21:323

    Google Scholar 

  69. Brooks BR, Saxe P, Laidig WD, Dupuis M (1981) Program Library GAMESS (No 481), Computer Center of the Institute for Molecular Science, Okazaki, Japan

    Google Scholar 

  70. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure. IV. Constants of diatomic molecules. New York, Van Nostrant Reinhold

    Google Scholar 

  71. Saxe P, Schaefer III HF, Handy NC (1981) Chem Phys Lett 79:202; Harrison RJ, Handy NC (1983) Chem Phys Lett 95:386

    Google Scholar 

  72. Bartlett RJ, Sekino H, Purvis III GD (1983) Chem Phys Lett 98:66

    Google Scholar 

  73. Brown FB, Shavitt I, Shepard R (1984) Chem Phys Lett 105:386

    Google Scholar 

  74. Laidig WD, Bartlett RJ (1984) Chem Phys Lett 104:424

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakatsuji, H. Exponentially generated wave functions and excited states of benzene. Theoret. Chim. Acta 71, 201–229 (1987). https://doi.org/10.1007/BF00526417

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00526417

Key words

Navigation