Skip to main content
Log in

Standardization of the Feulgen-Schiff technique

Staining characteristics of pure fuchsin dyes; a cytophotometric investigation

  • Published:
Histochemistry Aims and scope Submit manuscript

Summary

Four fuchsin analogues (Pararosaniline, Rosaniline, Magenta II and New Fuchsin) usually found in Basic Fuchsin have been applied as chemically pure dyes to the Feulgen-technique. Total nuclear absorption and wavelength of the absorption maximum were measured by microspectrophotometry in Feulgen stained cytological and plastic embedded histological liver samples, and in lymphocyte nuclei in human peripheral blood smears; absorption spectra of Feulgen stained DNA-polyacrylamide films were determined by spectrophotometry. The grey value distribution of tetraploid liver cell nuclei was calculated with an image analyzer. The staining characteristics of the pure dyes were compared to commercial fuchsin samples from various suppliers. Reverse phase thin layer chromatography was used for characterization and qualitative separation of commercial batches.

Pure fuchsin analogues were all equally suitable for Feulgen staining: with respect of staining intensity all pure fuchsin dyes gave nearly identical results with a bathochromic shift of the absorption maximum from Pararosaniline to New Fuchsin of about 8 μm.

Differences in staining results observed among the commercial dyes were due to varying dye content, contamination with an acridine-like fluorescent compound or simply mislabelling of samples. Pure Pararosaniline is recommended for a standard Feulgen technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkin NB, Richards BM (1956) Deoxyribonucleic acid in human tumours as measured by microspectrophotometry of Feulgen stain: a comparison of tumours arising at different sites. Br J Cancer 10:769–786

    Google Scholar 

  • Bennett, HS, Wyrick AD, Lee SW, McNeil JH (1976) Science and art in preparing tissue embedded in plastic for light microscopy, with special reference to glycol methacrylate, glass knives and simple stains. Stain Technol 51:71–97

    Google Scholar 

  • Böhm N (1968) Einfluß der Fixierung und der Säurekonzentration auf die Feulgen-Hydrolyse bei 28° C. Histochemie 4:201–211

    Google Scholar 

  • Böhm N, Fukuda M (1981) Fluoreszierende Farbstoffe vom Schiff-Typ. Acta Histochem (Suppl) 24:181–188

    Google Scholar 

  • Böhm N, Seibert HU (1966) Zur Bestimmung der Parameter der Bateman-Funktion bei der Auswertung von Feulgen-Hydrolysekurven. Histochemie 6:260–266

    Google Scholar 

  • Böhm N, Sprenger E, Schlüter G, Sandritter W (1968) Proportionalitätsfehler bei der Feulgen-Hydrolyse. Histochemie 15:194–203

    Google Scholar 

  • Colour Index (1971) ed. by the Society of Dyers and Colourists, England and by the Association of Textile Chemists. 3rd edn. Lowell, Massachussetts

  • Culling CFA, Allison RT, Barr WT (1985) Cellular pathology technique, 4th edn. Butterworths, London

    Google Scholar 

  • Deitch AD, Wagner D, Richart RM (1968) Conditions influencing the intensity of the Feulgen reaction. J Histochem Cytochem 16:371–379

    Google Scholar 

  • Demalsy P, Callebaut M (1967) Plain water as a vinsing agent preferable to sulfurous acid after the Feulgen nucleal reaction. Stain Technol 42:133–136

    Google Scholar 

  • Duijndam WAL, van Duijn P (1973) The dependance of the absorbance of the final chromophore formed in the Feulgen-Schiff reaction on the pH of the medium. Histochemie 35:373–375

    Google Scholar 

  • Duijndam WAL, van Duijn P (1975a) The influence of chromatin compactness on the stoichiometry of the Feulgen-Schiff procedure studied in model films. J Histochem Cytochem 23:882–890

    Google Scholar 

  • Duijndam WAL, van Duijn P (1975b) The interaction of apurinic acid aldehyde groups with pararosaniline in the Feulgen-Schiff and related staining procedures. Histochemistry 44:67–85

    Google Scholar 

  • Duijndam WAL, Hermans J, van Duijn P (1973) Application of the method of kinetic analysis of staining and destaining processes to the complex formed between hydrolyzed deoxyribonucleoprotein and Schiff's reagent in model films. J Histochem Cytochem 21:729–736

    Google Scholar 

  • Dutt MK (1976) Recent progress in the staining of DNA-aldehyde in cell nuclei. Acta Histochem 56:120–139

    Google Scholar 

  • Elleder M, Lojda Z (1971) Studies in lipid histochemistry. IV. The influence of terminal rinsing on the results of methods using Schiff's reagent. Histochemie 25:286–288

    Google Scholar 

  • Fand SB (1970) Environmental conditions for optimal Feulgen hydrolysis. In: Wied GL, Bahr GF (eds) Introduction to quantitative cytochemistry II. Academic Press, New York London, pp 209–221

    Google Scholar 

  • Feulgen R, Rossenbeck H (1924) Mikroskopisch-chemischer Nachweis einer Nukleinsäure vom Typus der Thymonukleinsäure und die darauf beruhende elektive Färbung von Zellkernen in mikroskopischen Präparaten. Z Physiol Chem 135:203–249

    Google Scholar 

  • Gabler W (1965) Die Reinigung von Parafuchsin für die Herstellung des Schiffschen Reagenzes sowie Versuche zur papierchromatographischen Trennung seiner Reaktionsprodukte mit Aldehyden. Acta Histochem 21:387–392

    Google Scholar 

  • Garcia AM (1969) Studies on deoxyribonucleic acid in leukocytes and related cells of mammals. VI: the Feulgen-Deoxyribonucleic acid content of rabbit leukocytes after hypotonic treatment. J Histochem Cytochem 17:47–55

    Google Scholar 

  • Garcia AM, Iorio R (1968) Studies on deoxyribonucleic acid in leukocytes and related cells of mammals. V: The fast green histone and the Feulgen-DNA content of rat leukocytes. Acta Cytol 12:46–51

    Google Scholar 

  • Gill JE, Jotz MM (1974) Deoxyribonucleic acid cytochemistry for automated cytology. J Histochem Cytochem 22:470–477

    Google Scholar 

  • Gill JE, Jotz MM (1976) Further observations on the chemistry of Pararosaniline-Feulgen staining. Histochemistry 46:147–160

    Google Scholar 

  • Goldstein DJ (1970) Aspects of scanning microdensitometry. I. Stray light (glare). J Microsc 92:1–16

    Google Scholar 

  • Goldstein DJ (1971) Aspects of scanning microdensitometry. II. Spot size, focus and resolution. J Microsc 93:15–42

    Google Scholar 

  • Graumann W (1953) Zur Standardisierung des Schiffschen Reagens. Z Wiss Mikrosk 61:225–226

    Google Scholar 

  • Greenwood MS, Berlyn GP (1968) Feulgen cytophotometry of pine nuclei: effects of fixation, role of formalin. Stain Technol 43:111–117

    Google Scholar 

  • Hardonk MJ, van Duijn P (1964a) A quantitative study of the Feulgen reaction with the aid of histochemical model systems. J Histochem Cytochem 12:752–757

    Google Scholar 

  • Hardonk MJ, van Duijn P (1964b) Studies on the Feulgen reaction with histochemical model systems. J Histochem Cytochem 12:758–767

    Google Scholar 

  • Harms H (1965) Handbuch der Farbstoffe für die Mikroskopie. Staufen Verlag, Kamp Lintfort

    Google Scholar 

  • Horobin RW (1982) Histochemistry. G. Fischer, Butterworths, Stuttgart New York London

    Google Scholar 

  • Kasten FH (1960) The chemistry of the Schiff's reaction. Int Rev Cytol 10:1–100

    Google Scholar 

  • Kjellstrand PTT, Lamm CJ (1976) A model of the breakdown and removal of the chromatin components during Feulgen acid hydrolysis. Histochem J 8:419–430

    Google Scholar 

  • Kovacs K, Longley JB (1975) Composition of basic fuchsin. J South Calif Med Assoc 71:11–15

    Google Scholar 

  • Lane RF, Tripp EJ (1971) Basic fuchsin and preparation of Schiff's reagent. Med Lab Technol 28:26–34

    Google Scholar 

  • Lichtenstein SJ, Nettleton GS (1980) Effects of fuchsin variants in aldehyde fuchsin staining. J Histochem Cytochem 28:683–688

    Google Scholar 

  • Lillie RD (1977) Conn's biological stains, 9th edn. Williams and Wilkins, Baltimore

    Google Scholar 

  • Lodin Z, Müller J, Pilny J, Hartman J (1963) Basic fuchsin and the Feulgen reaction: significance of the dye for cytophotometric determination of deoxyribonucleic acid in cell nuclei. J Histochem Cytochem 11:401–408

    Google Scholar 

  • Longley JB (1952) Effectiveness of Schiff variants in PAS and Feulgen nucleal technics. Stain Technol 27:161–170

    Google Scholar 

  • Mayall BL (1967) Variability in the stoichiometry of deoxyribonucleic acid stains. J Histochem Cytochem 15:762–763

    Google Scholar 

  • Mello M (1983) Cytochemical properties of euchromatin and heterochromatin. Histochem J 15:739–751

    Google Scholar 

  • Mowry RW (1978) Aldehyde fuchsin staining, direct or after oxidation: problems and remedies, with special reference to human pancreatic B cells, pituitaries, and elastic fibers. Stain Technol 53:141–154

    Google Scholar 

  • Mowry RW, Longley JB, Emmel VM (1980) Only aldehyde fuchsin made from pararosaniline stains pancreatic B cell granules and elastic fibers in unoxidized microsections: problems caused by mislabelling of certain basic fuchsin. Stain Technol 55:91–103

    Google Scholar 

  • Müller D (1966) Erfahrungen mit der Feulgen-Färbung für quantitative cytochemische DNS-Untersuchungen. Histochemic 7:96–102

    Google Scholar 

  • Nettleton GS, Martin AW (1979) Separation of fuchsin analogues using thin layer chromatography. Stain Technol 54:213–216

    Google Scholar 

  • Ortmann R, Forbes WF, Balasubramanian A (1966) Concerning the staining properties of aldehyde basic fuchsin. J Histochem Cytochem 14:104–111

    Google Scholar 

  • Oud PS, Zahniser DJ, Raaijmaker MCT, Vooijs PG, van de Walle RT (1981) Thionine-Feulgen-Congo Red staining of cervical smears for the BioPEPR image-analysis system. Anal Quant Cytol 3:289–294

    Google Scholar 

  • Oud PS, Henderik JBJ, Huysmans ACLM, Pahlplatz MMM, Hermkens HG, Tas J, James J, Vooijs GP (1984) The use of light green and orange II as quantitative protein stains, and their combination with the Feulgen method for the simultaneous determination of protein and DNA. Histochemistry 80:49–57

    Google Scholar 

  • Pearse AGE (1985) Histochemistry. Theoretical and applied, vol 2, 4th edn. Churchill Livingstone, Edinburgh London New York

    Google Scholar 

  • Persijn JP, van Dujin P (1961) Studies of the Feulgen reaction with the aid of DNA incorporated cellulose films. Histochemic 2:283–297

    Google Scholar 

  • Rasch RW, Rasch EM (1973) Kinetics of hydrolysis during the Feulgen reaction for deoxyribonucleic acid. A reevaluation. J Histochem Cytochem 21:1053–1065

    Google Scholar 

  • Romeis B (1968) Mikroskopische Technik. R. Oldenbourg, München Wien

    Google Scholar 

  • Sandritter W, Jobst K, Rakow L, Bosselmann K (1965) Zur Kinetik der Feulgenreaktion bei verlängerter Hydrolysezeit. Histochemie 4:420–437

    Google Scholar 

  • Schulte E (1986) Hematoxylin and the Feulgen reagent in nuclear staining. In: Boon ME, Kok LP (eds) Standardization and quantitation of diagnostic staining in cytology. Coulomb Press, Leyden, pp 15–26

    Google Scholar 

  • Sehlinger TE, Nettleton GS (1987) Separation of fuchsin homologs using high performance liquid chromatography. Stain Technol 62:291–296

    Google Scholar 

  • Stowell R (1945) Feulgen reaction for thymonucleic acid. Stain Technol 20:45–49

    Google Scholar 

  • Teichmann JS, Krick TP, Nettleton GS (1980) Effects of different fuchsin analogs on the Feulgen reaction. J Histochem Cytochem 28:1063–1066

    Google Scholar 

  • Van der Ploeg M, Duijndam WAL (1986) Matrix models. Histochemistry 84:283–300

    Google Scholar 

  • Van Duijn P (1956) A histochemical specific Thionine-SO2 reagent and its use in a bi-color method for deoxyribonucleic acid and periodic acid Schiff positive substances. J Histochem Cytochem 4:55–63

    Google Scholar 

  • Van Duijn P, Riddersma SH (1973) Purification of pararosaniline and atebrine by chromatography on lipophilic Sephadex LH-20. Histochem J 5:169–172

    Google Scholar 

  • Wittekind D (1985) Standardization of dyes and stains for automated cell pattern recognition. Anal Quant Cytol Histol 7:6–30

    Google Scholar 

  • Wittekind D, Gehring T (1985) On the nature of the Romanowsky-Giemsa staining and the Romanowsky-Giemsa effect. I. Model experiments on the specificity of Azure B-Eosin Y stain as compared with other thiazine dye-Eosin Y combinations. Histochem J 17:263–289

    Google Scholar 

  • Wittekind D, Schulte E (1987) Die Bedeutung der Standardisierung der Zell- und Gewebspräparation für bildanalytische Operationen. In: Eins S (Hrsg) Quantitative und strukturelle Bildanalyse in der Medizin. GIT Verlag, Darmstadt, pp 5–12

    Google Scholar 

  • Yarbo CL, Miller B, Andersen CE (1954) Purifying pararosanilin for use in colourless Schiff reagent. Stain Technol 29: 299–300

    Google Scholar 

  • Zipfel E, Grezes JR, Naujok A, Seiffert W, Wittekind DH, Zimmermann HW (1984) Über Romanowsky-Farbstoffe und den Romanowsky-Giemsa-Effekt. Histochemistry 81:337–351

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulte, E., Wittekind, D. Standardization of the Feulgen-Schiff technique. Histochemistry 91, 321–331 (1989). https://doi.org/10.1007/BF00493008

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00493008

Keywords

Navigation