Skip to main content
Log in

Solid-state ion exchange reactions between homoionic-montmorillonites and organoammonium salts

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Organoammonium-montmorillonite intercalation compounds were prepared by solid-state ion exchange reactions which we have developed recently in order to understand the nature of the solid-state intercalation reactions. The reactions were carried out by grinding the mixtures of homoionic-montmorillonites and organoammonium (dodecyltrimethylammonium, tetramethylammonium, and tetrabutylammonium) halides (chloride, bromide, and iodide) at room temperature. Both of the counter anions of the organoammonium salts and the interlayer exchangeable cations of montmorillonite are concerned with the solid-state ion exchange reactions, indicating that the solid-solid reactions are thermodynamically governed. The solid-state ion exchange reactions lead to novel and different reactivities and intercalation compounds from those of conventional solution methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.A. Ozin, Adv. Mater. 4, 612 (1992).

    Google Scholar 

  2. B.M. Barrer, Zeolites and Clay Minerals as Sorbents and Molecular Sieves (Academic Press: London, 1978).

    Google Scholar 

  3. B.K.G. Theng, The Chemistry of Clay-Organic Reactions (Adam Hilger: London, 1974).

    Google Scholar 

  4. G. Lagaly, Clay Miner. 16, 1 (1981), G. Lagaly, Solid State Ionics 22, 43 (1986).

    Google Scholar 

  5. J.W. Jordan, J. Phys. Colloid Chem. 54, 294 (1950).

    Google Scholar 

  6. S.V. Bondarenko, A.I. Zhukova, and YuI. Tarasevich, J. Chromatogr. 241, 281 (1982).

    Google Scholar 

  7. J.F. Lee, M.M. Mortland, S.A. Boyd, and C.T. Chiou, J. Chem. Soc., Faraday Trans. 1 85, 2953 (1989).

    Google Scholar 

  8. S.A. Boyd, J.F. Lee, and M. Mortland, Nature 333, 345 (1988).

    Google Scholar 

  9. A. Cornelis and P. Laszlo, Synthesis, 162 (1982).

  10. T.R. Jones, Clay Miner. 18, 399 (1983).

    Google Scholar 

  11. M. Ogawa, T. Handa, K. Kuroda, C. Kato, and T. Tani, J. Phys. Chem. 96, 8116 (1992), M. Ogawa, M. Takahashi, C. Kato, and K. Kuroda, J. Mater. Chem. 4, 519 (1994), M. Ogawa, M. Takahashi, and K. Kuroda, Chem. Mater. 6, 715 (1994), T. Seki, and K. Ichimura, Macromolecules 23, 31 (1990).

    Google Scholar 

  12. O. Patil, D.Y. Curtin, and I.C. Paul, J. Am. Chem. Soc. 106, 348 (1984), W.E. Brown, D. Dollimore, and A.K. Galwey, in Comprehensive Chemical Kinetics Vol. 22, C.H. Bamford and C.F.H. Tipper, eds. (Elsevier: Amsterdam, 1980).

    Google Scholar 

  13. F. Toda, K. Tanaka, and A. Sekikawa, J. Chem. Soc., Chem. Commun. 1987, 279.

  14. M. Ogawa, K. Kuroda, and C. Kato, Chem. Lett. 1659 (1989).

  15. M. Ogawa, K. Kato, K. Kuroda, and C. Kato, Clay Sci. 8, 31 (1990).

    Google Scholar 

  16. M. Ogawa, T. Handa, K. Kuroda, and C. Kato, Chem. Lett. 71 (1990).

  17. M. Ogawa, T. Hashizume, K. Kuroda, and C. Kato, Inorg. Chem. 30, 584 (1991).

    Google Scholar 

  18. M. Ogawa, K. Fujii, K. Kuroda, and C. Kato, Mater. Res. Soc. Symp. Proc. 233, 89 (1991).

    Google Scholar 

  19. M. Ogawa, M. Hirata, K. Kuroda, and C. Kato, Chem. Lett. 365 (1992).

  20. M. Ogawa, Y. Nagafusa, K. Kuroda, and C. Kato, Appl.Clay Sci. 7, 291 (1992).

    Google Scholar 

  21. M. Ogawa, H. Shirai, K. Kuroda, and C. Kato, Clays Clay Miner 40, 485 (1992).

    Google Scholar 

  22. M. Ogawa, T. Aono, K. Kuroda, and C. Kato, Langmuir 9, 1529 (1993).

    Google Scholar 

  23. M.A. Vicente, M. Sánchez-Camazano, M.J. Sánchez-Martín, M. Del Arco, C. Martín, V. Rives, and J. Vicente-Hernández, Clays Clay Miner. 37, 157 (1989).

    Google Scholar 

  24. M. Crocker, R.H.M. Herold, C.A. Emeis, and M. Krijger, Ctal. Lett. 15, 339 (1992).

    Google Scholar 

  25. J. Bujdák and H. Slosiariková, Appl. Clay Sci. 7, 263 (1992).

    Google Scholar 

  26. A.V. Kucherov and A.A. Slinkin, Zeolites 6, 175 (1986).

    Google Scholar 

  27. A.V. Kucherov and A.A. Slinkin, Zeolites 7, 38 (1987).

    Google Scholar 

  28. A.V. Kucherov and A.A. Slinkin, Zeolites 7, 43 (1987).

    Google Scholar 

  29. H.K. Beyer, H.G. Karge, and G. Borbery, Zeolites 8, 79 (1988).

    Google Scholar 

  30. H.G. Karge, H.K. Beyer, and G. Borbery, Catalysis Today 3, 41 (1988).

    Google Scholar 

  31. S. Beran, B. Wichterlova, and H.G. Karge, J. Chem. Soc. Faraday Trans. 86, 3033 (1990).

    Google Scholar 

  32. H. Eseman and H. Förster, J. Chem. Soc. Chem. Commun. 1319 (1994).

  33. Y. Sugahara, K. Kuroda, and C. Kato, J. Am. Ceram. Soc. 67, C-247 (1987).

    Google Scholar 

  34. T.C. Waddington, Advances in Inorganic Chemistry and Radiochemistry, H.J. Emeleus and A.G. Sharpe, eds. (Academic Press, New York, 1959) p. 190.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogawa, M., Hagiwara, A., Handa, T. et al. Solid-state ion exchange reactions between homoionic-montmorillonites and organoammonium salts. J Porous Mater 1, 85–89 (1995). https://doi.org/10.1007/BF00486527

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00486527

Keywords

Navigation