Skip to main content
Log in

Restoration by the rac locus of recombinant forming ability in recB and recC merozygotes of Escherichia coli K-12

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The recombinant forming ability of recB or recC strains of E. coli K12 is almost totally recovered in merozygotes which are heterozygous for a genetic locus denoted rac which is located five minutes clockwise from trp on the genetic map. This transient recovery phenomenon only occurs when the donor strain is rac + (wild type) and the recipient strain is rac -. The recombinants derived from such crosses all have the normal phenotype characteristic of recB (or recC ) strains, and they are almost always rac -. The results imply that the rac + locus (or loci) is zygotically expressed and excised from the chromosome in a manner which is analogous to the zygotic induction of a prophage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bachmann, B. J.: The pedigrees of some mutant strains of Escherichia coli K12. Bact. Rev. 36, 525–557 (1972).

    Google Scholar 

  • Barbour, S. D., Nagaishi, H., Templin, A., Clark, A. J.: Biochemical and genetic studies of recombination proficiency in Escherichia coli. II. Rec+ revertants caused by indirect suppression of Rec- mutations. Proc. nat. Acad. Sci. (Wash.) 67, 128–135 (1970).

    Google Scholar 

  • Bouck, N., Adelberg, E. A.: Mechanism of action of nalidixic acid on conjugating bacteria. J. Bact. 102, 688–701 (1970).

    Google Scholar 

  • Capaldo-Kimball, F., Barbour, S. D.: Involvement of recombination genes in growth and viability of Escherichia coli K12. J. Bact. 106, 204–212 (1971).

    Google Scholar 

  • Clark, A. J.: Toward a metabolic interpretation of genetic recombination of E. coli and its phages. Ann. Rev. Microbiol. 25, 437–464 (1971).

    Google Scholar 

  • DeHaan, P., Hoekstra, W., Verhoef, C., Felix, H.: Recombination in E. coli. III. Mapping by the gradient of transmission. Mutation Res. 8, 505–512 (1969).

    Google Scholar 

  • Emmerson, P. T.: Recombination deficient mutants of Escherichia coli K12 that map between thyA and argA. Genetics 60, 19–30 (1968).

    Google Scholar 

  • Haefner, K.: Spontaneous lethal sectoring, a further feature of Escherichia coli K-12 strains deficient in the function of rec and uvr genes. J. Bact. 96, 652–659 (1968).

    Google Scholar 

  • Itoh, T., Tomizawa, J. I.: Inactivation of chromosomal fragments transferred from Hfr strains. Genetics 68, 1–11 (1971).

    Google Scholar 

  • Jacob, F., Wollman, E.: Sexuality and the genetics of bacteria. New York: Academic Press, Inc. 1961.

    Google Scholar 

  • Lederberg, J., Lederberg, E. M.: Replica plating and indirect selection of bacterial mutants. J. Bact. 63, 399–406 (1952).

    Google Scholar 

  • Low, B.: Formation of merodiploids in matings with a class of Rec- recipient strains of Escherichia coli K12. Proc. nat. Acad. Sci. (Wash.) 60, 160–167 (1968).

    Google Scholar 

  • Low, B.: Escherichia coli K12 F-prime factors — old and new. Bact. Rev. 36, 587–607 (1972).

    Google Scholar 

  • Low, B.: Rapid mapping of conditional and auxotrophic mutations in Escherichia coli K12. J. Bact. 113, 798–812 (1973).

    Google Scholar 

  • Low, B., Gates, F., Goldstein, T., Soll, D.: Isolation and partial characterization of temperature-sensitive Escherichia coli mutants with altered leucyl- and seryl-transfer ribonucleic acid synthetases. J. Bact. 108, 742–750 (1971).

    Google Scholar 

  • Low, B., Wood, T. H.: A quick and efficient method for interruption of bacterial conjugation. Genet. Res. 6, 300–303 (1965).

    Google Scholar 

  • Miller, J. H.: Experiments in molecular genetics. Cold Spring Harbor Laboratory (1972).

  • Roth, R., Fogel, S.: A system selective for yeast mutants deficient in meiotic recombination. Molec. gen. Genet. 112, 295–305 (1971).

    Google Scholar 

  • Setlow, J. K., Boling, M. E., Beattie, K. L., Kimball, R. F.: A complex of recombination and repair genes in Haemophilus influenzae. J. molec. Biol. 68, 361–378 (1972).

    Google Scholar 

  • Signer, E., Echols, H., Weil, J., Radding, C., Shulman, M., Moore, L., Manly, K.: The general recombination system of bacteriophage λ. Cold Spr. Harb. Symp. quant. Biol. 33, 711–714 (1968).

    Google Scholar 

  • Taylor, A. L.: Current linkage map of Escherichia coli. Bact. Rev. 34, 155–175 (1970).

    Google Scholar 

  • Templin, A., Kushner, S. R., Clark, A. J.: Genetic analysis of mutations indirectly suppressing recB and recC mutations. Genetics 72, 205–215 (1972).

    Google Scholar 

  • Tomizawa, J., Ogawa, H.: Structural genes of ATP-dependent deoxyribonuclease of Escherichia coli. Nature (Lond.) New Biol. 239, 14–15 (1972).

    Google Scholar 

  • Willetts, N. S., Clark, A. J., Low, B.: Genetic location of certain mutations conferring recombination deficiency in Escherichia coli. J. Bact. 97, 244–249 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by W. Maas

Rights and permissions

Reprints and permissions

About this article

Cite this article

Low, B. Restoration by the rac locus of recombinant forming ability in recB and recC merozygotes of Escherichia coli K-12. Molec. Gen. Genet. 122, 119–130 (1973). https://doi.org/10.1007/BF00435185

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00435185

Keywords

Navigation