Skip to main content
Log in

Structure of T-DNA in plants regenerated from roots transformed by Agrobacterium rhizogenes strain A4

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The structure of the T-DNA in Ri-transformed plants of Brassica napus, Nicotiana plumbaginifolia and Nicotiana tabacum was analysed. All the plants studied present a particular phenotype with wrinkled leaves. The T-DNA is composed of two parts: TL and TR. The size of the TL-DNA (19–20 kb) seems to be almost constant, except in N. tabacum where it is shorter. The TR-DNA can be absent, and its size varies from about 5–28 kb, with two predominant lengths. The smaller size does not include the region homologous to the tms genes of the pTi T-DNA. The copy number varies from one to four copies per plant genome. TL and TR-DNA are not always present in the same copy number, but in some cases are linked together.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackermann C (1977) Planzen aus Agrobacterium rhizogenes Tumoren aus Nicotiana tabacum. Plant Sci Lett 8:23–30

    Google Scholar 

  • Barker RF, Idler KB, Thompson DV, Kemp JD (1983) Nucleotide sequence of the Agrobacterium tumefaciens octopine Ti plasmid pTi15855. Plant Mol Biol 2:335–350

    Google Scholar 

  • Birnboin MC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    Google Scholar 

  • Bourgin JP (1978) Valine-resistant plants from in vitro selected tobacco cells. Mol Gen Genet 161:225–230

    Google Scholar 

  • Byrne MC, Koplow J, David C, Tempe J, Chilton MD (1983) Structure of T-DNA in roots transformed by Agrobacterium rhizogenes. J Mol Appl Genet 2:201–209

    Google Scholar 

  • Chilton MD, Tepfer DA, Petit A, David C, Casse-Delbart F, Tempe J (1982) Agrobacterium rhizogenes inserts T-DNA into the genome of the host plant root cells. Nature 295:432–434

    Google Scholar 

  • Costantino P, Spano L, Pomponi M, Benvenuto E, Ancora G (1984) The T-DNA of Agrobacterium rhizogenes is transmitted through meiosis to the progeny of hairy root plants. J Mol Appl Genet 2:465–470

    Google Scholar 

  • David C, Chilton MD, Tempe J (1984) Conservation of T-DNA in plants regenerated from hairy root cultures. Bio/technology 2:73–76

    Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: Version II. Plant Mol Biol Reporter 1:19–21

    Google Scholar 

  • De Paolis A, Mauro ML, Pomponi M, Cardarelli M, Spano L, Costantino P (1985) Localization of agropine-synthesizing functions in the TR region of the root-inducing plasmid of Agrobacterium rhizogenes 1855. Plasmid 13:1–7

    Google Scholar 

  • Durand-Tardif M, Broglie R, Slightom J, Tepfer D (1985) Structure and expression of Ri T-DNA from Agrobacterium rhizogenes in Nicotiana tabacum. Organ and phenotypic specificity. J Mol Biol 186:557–564

    Google Scholar 

  • Garfinkel DJ, Simpson RB, Ream LW, White FF, Gordon MP, Nester EW (1981) Genetic analysis of crown-gall: fine structure map of the T-DNA by site-directed mutagenesis. Cell 27:143–153

    Google Scholar 

  • Gielen J, de Beuckeleer M, Seurinck J, Deboeck F, de Greve H, Lemmers M, van Montagu M, Schell J (1984) Complete nucleotide sequence of the TL-DNA of the Agrobacterium tumefaciens plasmid pTiAch5. EMBO J 3:835–846

    Google Scholar 

  • Guerche P, Jouanin L, Tepfer D, Pelletier G (1987) Genetic transformation of oilseed rape (Brassica napus) by Ri T-DNA of Agrobacterium rhizogenes and analysis of inheritance of the transformed phenotype. Mol Gen Genet 206:382–386

    Google Scholar 

  • Huffman GA, White FF, Gordon MP, Nester GW (1984) Hairy root inducing plasmid: Physical map and homology to tumor-inducing plasmids. J Bacteriol 157:269–276

    Google Scholar 

  • Inze D, Follin A, van Lijsebettens M, Simoens C, Genetello C, van Montagu M, Schell J (1984) Genetic analysis of the individual T-DNA genes of Agrobacterium tumefaciens; further evidence that two genes are involved in indole-3-acetic acid synthesis. Mol Gen Genet 194:265–274

    Google Scholar 

  • Joos H, Inze D, Caplan A, Sormann M, van Montagu M, Schell J (1983) Genetic analysis of T-DNA transcripts in nopaline crown-galls. Cell 32:1057–1067

    Google Scholar 

  • Jouanin L (1984) Restriction map of an agropine-type Ri plasmid and its homologies with Ti plasmids. Plasmid 12:91–102

    Google Scholar 

  • Lahners K, Byrne MC, Chilton MD (1984) T-DNA fragments of hairy root plasmid pRi8196 are distantly related to octopine and nopaline Ti plasmid T-DNA. Plasmid 11:130–140

    Google Scholar 

  • Leach F (1983) Etude de la région TL du plasmide Ri d'Agrobacterium rhizogenes souche A4. Thèse de troisième cycle, Université de Paris Sud, Centre d'Orsay

  • Lemmans J, Deblaere R, Willmitzer L, de Greve H, Hernalsteens JP, van Montagu M, Schell J (1982) Genetic identification of functions of TL-DNA transcripts in octopine crown-gall. EMBO J 1:147–152

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Ooms G, Hooykaas PJJ, Mooleman G, Schilperoort RA (1981) Crown gall plant tumors of abnormal morphology, induced by Agrobacterium tumefaciens carrying mutated octopine Ti plasmids; analysis of T-DNA functions. Gene 14:33–50

    Google Scholar 

  • Peralta EG, Ream LW (1985) T-DNA border sequences required for crown gall tumorigenesis. Proc Natl Acad Sci USA 82:5112–5116

    Google Scholar 

  • Salomon F, Deblaere R, Leemans J, Hernalsteens JP, van Montagu M, Schell J (1983) Genetic identification of functions of TR-DNA transcripts in octopine crown-galls. EMBO J 3:141–146

    Google Scholar 

  • Schroder C, Waffenschmidt S, Weiler EW, Schroder J (1984) The T-region of Ti plasmids codes for an enzyme synthesizing indole-3-acetic acid. Eur J Biochem 138:387–391

    Google Scholar 

  • Shaw CH, Watson MD, Carter GM, Shaw CM (1984) The right hand copy of the nopaline Ti-plasmid 25 bp repeat is required for tumor formation. Nucleic Acids Res 12:6031–6041

    Google Scholar 

  • Slightom JL, Jouanin L, Leach F, Drong RF, Tepfer D (1985) Isolation and identification of TL-DNA/plant junctions in Convolvulus arvensis transformed by Agrobacterium rhizogenes strain A4. EMBO J 4:3069–3077

    Google Scholar 

  • Slightom JL, Durand-Tardif M, Jouanin L, Tepfer D (1986)Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid: identification of open-reading frames. J Biol Chem 261:108–121

    Google Scholar 

  • Spano L, Pomponi M, Costantino P, van Slogteren GMS, Tempe J (1982) Identification of T-DNA in the root-inducing plasmid of the agropine type Agrobacterium rhizogenes 1855. Plant Mol Biol 1:291–300

    Google Scholar 

  • Taylor BH, Amasino RM, White FF, Nester EW, Gordon MP (1985) T-DNA analysis of plants regenerated from hairy root tumors. Mol Gen Genet 201:554–557

    Google Scholar 

  • Tepfer D (1983) The biology of genetic transformation of higher plants by Agrobacterium rhizogenes. In: Puhler A (ed) Molecular Genetics of the Bacteria-Plant Interaction, Springer, Berlin, Heidelberg, pp 248–258

    Google Scholar 

  • Tepfer D (1984) Genetic transformation of several species of higher plants by Agrobacterium rhizogenes: phenotypic consequences and sexual transmission of the transformed genotype and phenotype. Cell 37:959–967

    Google Scholar 

  • Tourneur J, Jouanin L, Muller JF, Caboche M (1985) A genetic approach to the study of the mechanism of action of auxin in tobacco. Susceptibility of an auxin resistant mutant to Agrobacterium transformation. ICN-UCLA Symp Mol Cell Biol Plant Genetics 35:791–797

    Google Scholar 

  • Velten J, Willmitzer L, Leemans J, Ellis J, Deblaere R, van Montagu M, Schell J (1983) TR genes involved in agropine production. In: Puhler A (ed) Molecular genetics of the bacteria plant interaction, Springer, Berlin, Heidelberg, pp 455–462

    Google Scholar 

  • Vilaine F, Casse-Delbart F (1987) Independent induction of transformed roots by the TL and TR regions of the Ri plasmid of agropine type Agrobacterium rhizogenes. Mol Gen Genet 206:17–23

    Google Scholar 

  • Wang K, Herrela-Estrella L, van Montagu M, Zambryski P (1984) Right 25 bp terminus sequence of the nopaline T-DNA is essential for and determines direction of DNA transfer from Agrobacterium to the plant genome. Cell 38:455–462

    Google Scholar 

  • White FF, Ghidossi G, Gordon MP, Nester EW (1982) Tumor induction by Agrobacterium rhizogenes involves the transfer of plasmid DNA to the plant genome. Proc Natl Acad Sci USA 79:3193–3197

    Google Scholar 

  • White FF, Garfinkel DJ, Huffman GA, Gordon MP, Nester EW (1983) Sequences homologous to Agrobacterium rhizogenes T-DNA in the genomes of infected plants. Nature 301:348–350

    Google Scholar 

  • White FF, Taylor BH, Huffman GA, Gordon MP, Nester EW (1985) Molecular and genetic analysis of the transferred DNA regions of the root inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164:33–44

    Google Scholar 

  • Willmitzer L, Sanchez-Serrano J, Bushfeld E, Schell J (1982) DNA from Agrobacterium rhizogenes is transferred to and expressed in axenic hairy root plant tissues. Mol Gen Genet 186:16–22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Schell

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jouanin, L., Guerche, P., Pamboukdjian, N. et al. Structure of T-DNA in plants regenerated from roots transformed by Agrobacterium rhizogenes strain A4. Mol Gen Genet 206, 387–392 (1987). https://doi.org/10.1007/BF00428876

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00428876

Key words

Navigation