Skip to main content
Log in

Incorporation of organic compounds into cell protein by lithotrophic, ammonia-oxidizing bacteria

  • Physiology and Growth
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Incorporation of organic compounds into cell protein by the obligate chemolithotrophs Nitrosomonas spec., Nitrosococcus oceanus, Nitrosococcus mobilis, Nitrosovibrio tenuis, Nitrosolobus spec., and Nitrosopira spec. was studied. In the presence of ammonia as energy source organic substrates were supplied. Distribution of 14C into cell amino acids arising from 14C-labelled glucose, Na-pyruvate, and Na-acetate was investigated. While carbon from glucose was distributed unrestricted, carbon from pyruvate preferably entered into the amino acids of the pyruvate and glutamate family and from acetate mainly into leucine and the glutamate family. Among the strains examined, slight differences were observed, but all should be included under group A of the scheme of Smith and Hoare (1977).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Campbell A. E., Helebust J. A. and Watson S. W. 1966. Reductive pentose phosphate cycle in Nitrosocystis oceanus. — J. Bacteriol. 91: 1178–1185.

    Google Scholar 

  • Davey J. F., Whittenbury R. and Wilkinson J. F. 1972. The distribution in the methylobacteria of some key enzymes concerned with intermediary metabolism. — Arch. Mikrobiol. 87: 359–366.

    Google Scholar 

  • Hooper A. B. 1969. Biochemical basis of obligate autotrophy in Nitrosomonas europaea. — J. Bacteriol. 97: 776–779.

    Google Scholar 

  • Johnson E. J. and Abraham S. 1969a. Enzymes of intermediary carbohydrate metabolism in the obligate autotrophs, Thiobacillus thioparus and Thiobacillus neapolitanus. — J. Bacteriol. 100: 962–968.

    Google Scholar 

  • Johnson E. J. and Abraham S. 1969b. Assimilation and metabolism of exogenous organic compounds by the strict autotrophs Thiobacillus thioparus and Thiobacillus neapolitanus. — J. Bacteriol. 97: 1128–1208.

    Google Scholar 

  • Kaiser F. E., Gehrke C. W., Zumwalt R. W. and Kuo K. C. 1974. Amino acid analysis —Hydrolysis, ion-exchange cleanup, derivatization and quantitation by gas-liquid chromatography. — J. Chromatogr. 94: 113–133.

    Google Scholar 

  • Kelly D. P., 1970. Metabolism of organic acids by Thiobacillus neapolitanus. — Arch. Mikrobiol. 73: 177–192.

    Google Scholar 

  • Koops H.-P., Harms H. and Wehrmann H. 1976. Isolation of a moderate halophilic ammonia-oxidizing bacterium, Nitrosococcus mobilis nov. sp. — Arch. Microbiol. 107: 277–282.

    Google Scholar 

  • Krümmel, A. 1978. Vergleichende Untersuchungen zum Einfluß organischer C-Verbindungen auf das Wachstum, das Fettsäuremuster und die Feinstruktur ammoniakoxidierender Bakterien. —Thesis, Univ. Hamburg.

  • Matin A. 1978. Organic nutrition of chemolithotrophic bacteria. — Annu. Rev. Microbiol. 32: 433–468.

    Google Scholar 

  • Peeters T. L., Ziu M. S. and Aleem M. J. H. 1970. The tricarboxylic acid cycle in Thiobacillus denitrificans and Thiobacillus A2. — J. Gen. Microbiol. 64: 29–35.

    Google Scholar 

  • Samoilov P. M., Aaranova N. A., Vorob'eva L. I. and Fedulova I. E. 1968. Influence of carbon source on amino acid formation and protein synthesis in Mycobacterium luteum. — Microbiologiya 37: 264–268.

    Google Scholar 

  • Smith A. J., London J. and Stanier R. Y. 1967. Biochemical basis of obligate autotrophy in blue-green algae and thiobacilli. — J. Bacteriol. 94: 972–983.

    Google Scholar 

  • Smith A. J. and Hoare D. S. 1977. Specialist phototrophs, lithotrophs, and methylotrophs: Unity among a diversity of procaryotes? — Bacteriol. Rev. 41: 419–448.

    Google Scholar 

  • Suzuki I. and Werkman C. H. 1958. Chemoautotrophic carbon dioxide fixation by extracts of Thiobacillus thiooxidans. I. Formation of oxalacetic acid. — Arch. Biochem. Biophys. 76: 103–111.

    Google Scholar 

  • Taylor B. F. and Hoare D. S. 1971. Thiobacillus denitrificans as an obligate chemolithotroph. II. Cell suspension and enzymic studies. — Arch. Mikrobiol. 80: 262–276.

    Google Scholar 

  • Wallace W., Knowles S. E. and Nicholas D. J. D. 1970. Intermediary metabolism of carbon compounds by nitrifying bacteria. — Arch. Mikrobiol. 70: 26–42.

    Google Scholar 

  • Watson S. W., Graham L. B., Remsen C. C. and Valois F. W. 1971. A lobular ammonia oxidizing bacterium, Nitrosolobus multiformis nov. gen. nov. sp. — Arch. Mikrobiol. 76: 183–203.

    Google Scholar 

  • Williams P. J. LeB. and Watson S. W. 1968. Autotrophy in Nitrosocystis oceanus. — J. Bacteriol. 96: 1640–1648.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martiny, H., Koops, HP. Incorporation of organic compounds into cell protein by lithotrophic, ammonia-oxidizing bacteria. Antonie van Leeuwenhoek 48, 327–336 (1982). https://doi.org/10.1007/BF00418286

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00418286

Keywords

Navigation