Skip to main content
Log in

Ferredoxin-dependent carbon assimilation in Rhodospirillum rubrum

  • Published:
Archiv für Mikrobiologie Aims and scope Submit manuscript

Summary

Evidence has been presented that a soluble fraction from R. rubrum cells contains two new primary carboxylation reactions which depend on the reducing power of ferredoxin: (a) pyruvate synthase which brings about a synthesis of pyruvate from acetyl-CoA and CO2 and (b) α-ketoglutarate synthase which brings about a synthesis of α-ketoglutarate from succinyl-CoA and CO2. The soluble fraction of R. rubrum cells contains also a series of other enzymes which, together with the ferredoxin-dependent enzymes, constitutes a reductive carboxylic acid cycle—a new cyclic pathway for CO2 assimilation that was first found in the photosynthetic bacterium, Chlorobium thiosulfatophilum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrew, I. G., and J. G. Morris: The biosynthesis of alanine by Clostridium kluyveri. Biochim. biophys. Acta (Amst.) 97, 176 (1965).

    Google Scholar 

  • Bachofen, R., B. B. Buchanan, and D. I. Arnon: Ferredoxin as a reductant in pyruvate synthesis by a bacterial extract. Proc. nat. Acad. Sci. (Wash.) 51, 690 (1964).

    Google Scholar 

  • Bassham, J. A., and M. Calvin: Path of carbon in photosynthesis. New York: Benjamin Press 1962.

    Google Scholar 

  • Buchanan, B. B., and D. I. Arnon: Ferredoxin-dependent synthesis of labelled pyruvate from labelled acetyl coenzyme A and carbon dioxide. Biochem. biophys. Res. Commun. 20, 163 (1965).

    Google Scholar 

  • —, R. Bachofen, and D. I. Arnon: Role of ferrodoxin in the reductive assimilation of CO2 and acetate by extracts of the photosynthetic bacterium, Chromatium. Proc. nat. Acad. Sci. (Wash.) 52, 839 (1964).

    Google Scholar 

  • —, and M. C. W. Evans: The synthesis of α-ketoglutarate from succinate and carbon dioxide by a subcellular preparation of a photosynthetic bacterium. Proc. nat. Acad. Sci. (Wash.) 54, 1212 (1965).

    Google Scholar 

  • —— and M. C. W. Evans: The synthesis of phosphopenolpyruvate from pyruvate and ATP by extracts of photosynthetic bacteria. Biochem. biophys. Res. Commun. 22, 484 (1966).

    Google Scholar 

  • ——, M. C. W. Evans, and D. I. Arnon: Ferredoxin-dependent pyruvate synthesis by enzymes of photosynthetic bacteria. In: A. San Pietro, ed.: Non-Heme Iron Proteins: Role in Energy Conversion, p. 175. Yellow Springs, Ohio: Antioch Press 1965.

    Google Scholar 

  • —, W. Lovenberg, and J. C. Rabinowitz: A comparison of clostridial ferredoxins. Proc. nat. Acad. Sci. (Wash.) 49, 345 (1963).

    Google Scholar 

  • Cutinelli, C., G. Ehrensvärd, L. Reio, E. Saluste, and R. Stjernholm: Acetic acid metabolism in Rhodospirillum rubrum under anaerobic conditions, II. Ark. Kemi 3, 315 (1951).

    Google Scholar 

  • Evans, M. C. W.: The photoassimilation of succinate to hexose by Rhodospirillum rubrum. Biochem. J. 95, 669 (1965).

    Google Scholar 

  • —, and B. B. Buchanan: Photoreduction of ferredoxin and its use in carbon dioxide fixation by a subcellular system from a photosynthetic bacterium. Proc. nat. Acad. Sci. (Wash.) 53, 1420 (1965).

    Google Scholar 

  • —— and D. I. Arnon: A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc. nat. Acad. Sci. (Wash.) 55, 928 (1966).

    Google Scholar 

  • Fuller, R. C., and M. Gibbs: Intracellular and phylogenetic distribution of ribulose 1,5-diphosphate carboxylase and d-glyceraldehyde-3-phosphate dehydrogenases. Plant Physiol. 34, 324 (1959).

    Google Scholar 

  • —, R. M. Smillie, E. C. Sisler, and H. L. Kornberg: Carbon metabolism in Chromatium. J. biol. Chem. 236, 2140 (1961).

    Google Scholar 

  • Gest, H., J. G. Ormerod, and K. S. Ormerod: Photometabolism of Rhodospirillum rubrum: light-dependent dissimilation of organic compounds to carbon dioxide and molecular hydrogen by an anaerobic citric acid cycle. Arch. Biochem. 97, 21 (1962).

    Google Scholar 

  • Heer, E., and R. Bachofen: Pyruvatstoffwechsel von Clostridium butyricum. Arch. Mikrobiol. 54, 1 (1966).

    Google Scholar 

  • Hoare, D. S.: The photo-assimilation of acetate by Rhodospirillum rubrum. Biochem. J. 87, 284 (1963).

    Google Scholar 

  • Knight, M.: The photometabolism of propionate by Rhodospirillum rubrum. Biochem. J. 84, 170 (1962).

    Google Scholar 

  • Lascelles, J.: The synthesis of porphyrins and bacterio-chlorophyll by cell suspensions of Rhodopseudomonas spheroides. Biochem. J. 62, 78 (1956).

    Google Scholar 

  • Losada, M., A. V. Trebst, S. Ogata, and D. I. Arnon: The equivalence of light and adenosine triphosphate in bacterial photosynthesis. Nature (Lond.) 186, 753 (1960).

    Google Scholar 

  • Ormerod, J. C., and H. Gest: Symposium on metabolism of inorganic compounds IV. Hydrogen photosynthesis and alternative metabolic pathways in photosynthetic bacteria. Bact. Rev. 26, 51 (1962).

    Google Scholar 

  • Pfennig, N.: Eine vollsynthetische Nährlösung zur selektiven Anreicherung einiger Schwefelpurpurbakterien. Naturwissenschaften 48, 136 (1961).

    Google Scholar 

  • Raeburn, S., and J. C. Rabinowitz: Pyruvate synthesis by a partially purified enzyme from Clostridium acidi-urici. Biochem. biophys. Res. Commun. 18, 303 (1965).

    Google Scholar 

  • Shigesada, K., K. Hidaka, H. Katsuki, and S. Tanaka: Biosynthesis of glutamate in photosynthetic bacteria. Biochim. biophys. Acta (Amst.) 112, 182 (1966).

    Google Scholar 

  • Smillie, R. M., N. Rigopoulos, and H. Kelly: Enzymes of the reductive pentose phosphate cycle in the purple and in the green photosynthetic sulphur bacteria. Biochim. biophys. Acta (Amst.) 56, 612 (1962).

    Google Scholar 

  • Stanier, R. Y., M. Doudoroff, R. Kunisawa, and R. Contopoulou: The role of organic substrates in bacterial photosynthesis. Proc. nat. Acad. Sci. (Wash.) 45, 1246 (1959).

    Google Scholar 

  • Stern, J. R.: Role of cofactors in pyruvate oxidation and synthesis by extracts of Clostridium kluyveri. In: A. San Pietro, ed.: Non-Heme Iron Proteins: Role in Energy Conversion, p. 199. Yellow Springs, Ohio: Antioch Press 1965.

    Google Scholar 

  • Tagawa, K., and D. I. Arnon: Ferredoxins as electron carriers in photosynthesis and in the biological production and consumption of hydrogen gas. Nature (Lond.) 195, 537 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to C. B. van Niel on the occasion of his 70th birthday.

Aided by grants from the National Institute of General Medical Sciences, Office of Naval Research and the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchanan, B.B., Evans, M.C.W. & Arnon, D.I. Ferredoxin-dependent carbon assimilation in Rhodospirillum rubrum . Archiv. Mikrobiol. 59, 32–40 (1967). https://doi.org/10.1007/BF00406314

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00406314

Keywords

Navigation