Skip to main content
Log in

The cytochrome oxidase subunit I gene of Tetrahymena: a 57 amino acid NH2-terminal extension and a 108 amino acid insert

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

The gene sequence for cytochrome oxidase subunit I (COI) in the ciliate Tetrahymena mitochondrial DNA has been determined and shown to be coded by the same strand as codes the genes (in order) for 14S rRNA, tRNAtrp tRNAglu 21S rRNA, tRNAleu and tRNAmet. The predicted protein has 698 amino acids, including an NH2-terminal 57 amino acid extension and a 108 amino acid insert originally found in Paramecium COI. These extension and insert segments are not highly hydrophobic but are relatively rich in lysine, arginine and serine. In analogy with the presequence of nuclear-encoded mitochondrial proteins, they might function as a transmembrane signal. The remaining poly-peptide segments show a hydrophobicity characteristic of membrane spanning proteins. TCOI shows a 64% amino acid identity with Paramecium COI but less than a 38% amino acid conservation with human COI. The Tetrahymena mitochondrial code is analogous with the mammalian mitochondrial code; but differs from the Tetrahymena nuclear genetic code; TGA is exclusively translated as tryptophan; ATA is used as an initiation codon probably for methionine, and TAA as a stop codon; the arginine codons (CGN) are not used. The use of the leucine codon TTA in TCOI is contradictory to the codon recognition pattern previously obtained from the isolated tRNAleu isoacceptors recognizing only the CUN codons, but consistent with the tRNAleu (anticodon UAA) gene encoded in the genome. The reason for this inconsistency has not been resolved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allison DS, Schatz G (1986) Proc Natl Acad Sci USA 83:9011–9015

    Google Scholar 

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Nature 290:457–465

    Google Scholar 

  • Aujame L, Freeman KB (1979) Nucleic Acids Res 6:455–469

    Google Scholar 

  • Bibb MJ, van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Cell 26:167–180

    Google Scholar 

  • Bonitz SG, Coruzzi G, Thalenfeld BE, Tzagoloff A, Macino G (1980) J Biol Chem 255:11927–11941

    Google Scholar 

  • Breitenberger CA, RajBhandary UL (1985) Trends Biochem Sci 10:478–483

    Google Scholar 

  • Brown WM, Prager EM, Wang A, Wilson AC (1982) J Mol Evol 18:225–239

    Google Scholar 

  • Chiu N, Chiu AOS, Suyama Y (1974) J Mol Biol 82:441–457

    Google Scholar 

  • Chin N, Chiu AOS, Suyama Y (1975) J Mol Biol 99:37–50

    Google Scholar 

  • Crick FCH (1966) J Mol Biol 19:548–555

    Google Scholar 

  • Dale RMK, McClure BA, Houchins JP (1985) Plasmid 13:31–40

    Google Scholar 

  • de Jonge JC, de Vries H (1983) Curr Genet 7:21–28

    Google Scholar 

  • de la Cruz VF, Neckelmann N, Simpson L (1984) J Biol Chem 259:15136–15147

    Google Scholar 

  • Goldbach RW, Arnberg AC, Van Bruggen EFJ, Defize J, Borst P (1977) Biochim Biophys Acta 477:37–50

    Google Scholar 

  • Heinonen TYK, Schnare MN, Young PG, Gray MW (1987) J Biol Chem 262:2879–2887

    Google Scholar 

  • Horowitz S, Gorovsky MA (1985) Proc Natl Acad Sci USA 82:2452–2455

    Google Scholar 

  • Hu N-T, Messing J (1982) Gene 17:271–277

    Google Scholar 

  • Hudspeth MES, Ainley WM, Shumard DS, Butow RA, Grossman LI (1982) Cell 30:617–626

    Google Scholar 

  • Hurt EC, Van Loon APGM (1986) Trends Biochem Sci 11:204–207

    Google Scholar 

  • Kyte J, Doolittle RF (1982) J Mol Biol 157:105–132

    Google Scholar 

  • Labriola J, Weiss I, Zapatero J, Suyama Y (1987) Curr Genet 11:529–536

    Google Scholar 

  • Lipman WJ, Pearson WR (1985) Science 227:1435–1441

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New Yrok

    Google Scholar 

  • Maxam AM, Gilbert W (1980) In: Grossman L, Moldave K (eds) Methods enzymology 65:499–560. Academic Press, New York, pp 499–560

    Google Scholar 

  • Pratje E, Guiard B (1986) EMBO J 5:1313–1317

    Google Scholar 

  • Pratje E, Mannhaupt G, Michelis G, Beyreuther K (1983) EMBO J 2:1049–1054

    Google Scholar 

  • Preer Jr JR, Preer LB, Rudman BM, Barnett AJ (1985) Nature 314:188–190

    Google Scholar 

  • Pritchard AE, Seilhamer JJ, Cummings DJ (1986) Gene 44:243–253

    Google Scholar 

  • Rigby PW, Dieckamann M, Rhodes C, Berg P (1977) J Mol Biol 113:237–251

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Seilhamer JJ, Cummings DJ (1982) Mol Gen Genet 187:236–239

    Google Scholar 

  • Shine J, Dalgarno L (1974) Proc Natl Acad Sci USA 71:1342–1346

    Google Scholar 

  • Schnare MN, Heinonen TYK, Young PG, Gray MW (1986) J Biol Chem 261:5187–5193

    Google Scholar 

  • Staden R (1984) Nucleic Acids Res 12:521–538

    Google Scholar 

  • Suyama Y (1982) In: Slonimski P, Borst P, Attardi G (eds) Mitochondrial genes. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 449–455

    Google Scholar 

  • Suyama Y (1985) Nucleic Acids Res 13:3273–3284

    Google Scholar 

  • Suyama Y (1986) Curr Genet 10:411–420

    Google Scholar 

  • Suyama Y, Miura K (1968) Proc Natl Acad Sci USA 60:235–242

    Google Scholar 

  • Suyama Y, Preer Jr JR (1965) Genetics 52:1051–1058

    Google Scholar 

  • Suyama Y, Fukuhara H, Sor F (1985) Curr Genet 9:479–493

    Google Scholar 

  • Suyama Y, Jenney F, Okawa N (1987) Curr Genet 11:327–330

    Google Scholar 

  • Tzagoloff A (1982) In: Mitochondria. Plenum, New York London, p 308

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Gene 33:103–119

    Google Scholar 

  • Waring RB, Brown TA, Ray JA, Scazzocchio C, Davies RW (1984) EMBO J 3:2121–2128

    Google Scholar 

  • Werner S, Bertrand H (1979) Eur J Biochem 99:463–470

    Google Scholar 

  • Werner S, Machleidt W, Bertrand H, Wild C (1980) In: Kroon AM, Saccone C (eds) The organization and expression of the mitochondrial genome. Elsevier/Biomed North Holland, Amsterdam, pp 399–411

    Google Scholar 

  • Van't Sant P, Mak JFC, Kroon AM (1981) Eur J Biochem 121:21–26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziaie, Z., Suyama, Y. The cytochrome oxidase subunit I gene of Tetrahymena: a 57 amino acid NH2-terminal extension and a 108 amino acid insert. Curr Genet 12, 357–368 (1987). https://doi.org/10.1007/BF00405758

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00405758

Key words

Navigation