Skip to main content
Log in

A geometrical description of local and global anomalies

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

The general topological framework for testing the possible occurrence of anomalies in gauge theories can be constructed in terms of the theory of group actions on line bundles through the introduction of a suitable group cohomology. In this Letter, we generalize this construction in such a way that it can be applied to a larger class of theories, allowing for a noncontractible configuration space and a nonconnected ‘gauge’ group. This construction find applications to the problem of the lifts of principal group actions. As a physical application, we compare the mechanisms of the anomalies cancelation in gauge and string theories, through a geometrical splitting of local and global anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AtiyahM. and SingerI., Dirac operators coupled to vector potentials, Proc. Nat. Acad. Sci. USA 81, 2597 (1984).

    Google Scholar 

  2. Alvarez GauméL. and GinspargP., The topological meaning of non abelian anomalies, Nucl. Phys. B243, 449 (1984).

    Article  Google Scholar 

  3. MooreG. and NelsonP., The aetiology of sigma model anomalies, Commun. Math. Phys. 100, 83 (1985).

    Google Scholar 

  4. BardeenW., Anomalous Ward identities in spinor field theories, Phys. Rev. 184, 1848 (1969).

    Google Scholar 

  5. WittenE., An SU(2) anomaly. Phys. Lett. B117, 324 (1982).

    Article  Google Scholar 

  6. FalquiG. and ReinaC., BRS cohomology and topological anomalies. Commun. Math. Phys. 102, 503 (1985); Catenacci, R., Pirola, G. P., Martellini, M., and Reina, C., Group actions and anomalies in gauge theories, Phys. Lett. B172, 223 (1986); Blau, M., Group cocycles, line bundles and anomalies, Universität Wien preprint ThPh 25 (1988).

    Google Scholar 

  7. AtiyahM., K theory, W. A. Benjamin, New York, 1967.

    Google Scholar 

  8. HattoriA. and YoshidaT., Lifting compact group actions in fiber bundles, Japan. J. Math. 2, 13 (1976).

    Google Scholar 

  9. GodementR., Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1958.

    Google Scholar 

  10. BelavinA. A. and KnizhnikV. G., Algebraic geometry and the geometry of quantum strings, Phys. Lett. B 168, 201 (1986); Catenacci, R., Cornalba, M., Martellini, M., and Reina, C., Algebraic geometry and path integrals for closed strings. Phys. Lett. B 172, 328 (1986); Bost, J. B. and Jolicoeur, T., A holomorphy property and the critical dimension in string theory from an index theorem, Phys. Lett. B 174, 273 (1986).

    Article  Google Scholar 

  11. PowellJ., Two theorems on the mapping class group of a surface, Proc. Amer. Math. Soc. 68, 347 (1978).

    Google Scholar 

  12. Falqui, G. and Reina, C., A note on the global structure of supermoduli spaces, Preprint SISSA, Trieste (1989).

  13. SingerI. M., Some remarks on the Gribov ambiguity, Commun. Math. Phys. 60, 7 (1978).

    Google Scholar 

  14. SpanierE. H., Algebraic Topology, Tata McGraw-Hill, New Delhi, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by MPI 40% Project ‘Geometry and Physics’.

Partially supported by MPI 40% Project ‘Algebraic Geometry’.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catenacci, R., Pirola, G.P. A geometrical description of local and global anomalies. Lett Math Phys 19, 45–51 (1990). https://doi.org/10.1007/BF00402259

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00402259

AMS subject classifications (1980)

Navigation