Skip to main content
Log in

Lead toxicity effects on indole-3-ylacetic acid-induced cell elongation

  • Published:
Planta Aims and scope Submit manuscript

Abstract

In vitro studies of IAA-induced cell elongation in Triticum aestivum have demonstrated that lead causes a large reduction in elongation. Inhibition of elongation can be reduced by increasing the concentration of IAA, or by the addition of calcium. The inhibitory effect appears to be linked with changes in the properties of the cell walls. Experiments are described which show that lead becomes bound strongly to certain chemical substances involved in cell wall architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albersheim, P.: The walls of growing plant cells. Sci. Amer. 1320, 80–95 (1975)

    Google Scholar 

  • Barratt, A.J., Northcote, D.H.: Apple fruit pectic substances. Biochem. J. 94, 617–627 (1965)

    Google Scholar 

  • Bennet-Clark, T.A.: Salt accumulation and mode of action of auxin. A preliminary hypothesis. In: The chemistry and mode of action of plant growth substances, pp. 284–291, Wain, R.L., Wightman, F. eds., London: Butterworths 1956

    Google Scholar 

  • Berry, R.A.: The manurial properties of lead nitrate. J. Agric. Sci. 14, 58–65 (1924)

    Google Scholar 

  • Bonnet, E.: Action des sels solubles de plomb sur les plantes. C. R. Acad. Sci. 174, 488–491 (1922)

    Google Scholar 

  • Burström, H.: The influence of heteroauxin on cell growth and root development. Lantbrukshögskolans Annaler 10, 209–240 (1942)

    Google Scholar 

  • Burström, H.: Growth and water absorption of Helianthus tuber tissue. Physiol. Plant. 6, 685–691 (1953)

    Google Scholar 

  • Cleland, R.: A separation of auxin-induced cell-wall loosening into its plastic and elastic components. Physiol. Plant. 11, 599–699 (1958)

    Google Scholar 

  • Cleland, R., Bonner, J.: The residual effect of auxin on the cell wall. Plant Physiol. 31, 350–354 (1956)

    Google Scholar 

  • Commoner, B., Fogel, S., Muller, W.H.: The mechanism of auxin action. The effect of auxin on water absorption by potato tuber tissue. Amer. J. Bot. 30, 13–28 (1943)

    Google Scholar 

  • Darvill, A.G., Smith, C.J., Hall, M.A.: Auxin induced proton release cell wall structure and elongation growth; a hypothesis. In: Regulation of cell membrane activities in plants pp. 275–281, Marre, E., Cifferi, O. eds., Amsterdam: Elsevier 1977

    Google Scholar 

  • Groenewegen, H., Mills, J.A.: Uptake of mannitol into the shoots of intact barley plants. Aust. J. Biol. Sci. 13, 1–5 (1960)

    Google Scholar 

  • Hackett, D.P., Thimann, K.V.: The nature of auxin-induced water uptake by potato tissue. Amer. J. Bot. 39, 553–560 (1952)

    Google Scholar 

  • Hammett, F.S.: The location of lead by growing roots. Proto-plasma 4, 183–185 (1928a)

    Google Scholar 

  • Hammett, F.S.: The influence of lead on mitosis and cell size in the growing root. Protoplasma 5, 535–542 (1928b)

    Google Scholar 

  • Heyn, A.N.J.: Der Mechanismus der Zellstreckung. Rec. Trav. Bot. Neerland 28, 113–144 (1931)

    Google Scholar 

  • John, M.K.: Varietal response to lead by lettuce. Water, Air, Soil Pollution 8, 2, 133–144 (1977)

    Google Scholar 

  • Keaton, C.M.: The influence of lead compounds on the growth of barley. Soil Sci. 43, 401–411 (1937)

    Google Scholar 

  • Keegstra, K., Talmadge, K.W., Bauer, W.D., Albersheim, P.: The structure of plant cell walls. III A model of the walls of suspension-cultured sycamore cells based on the interconnections of the macromolecular components. Plant Physiol. 51, 188–196 (1973)

    Google Scholar 

  • Kertesz, Z.I.: The pectic substances pp. 572–573, London: Inter-science 1951

    Google Scholar 

  • Lane, S.D., Martin, E.S.: A histochemical investigation of lead uptake in Raphanus sativus. New Phytologist 79, 2. (1977)

    Google Scholar 

  • Levan, A.: Cytological Reactions induced by inorganic salt solutions. Nature 156, 751–752 (1945)

    Google Scholar 

  • Masuda, Y.: Auxin-induced growth of tuber tissue of Jerusalem artichoke 1. Cell physiological studies in the expansion growth. Bot. Mag. Tokyo 78, 417–423 (1965)

    Google Scholar 

  • Mukherji, S., Maitra, P.: Growth and metabolism of germinating rice (Oryza sativa L.) seeds as influenced by toxic concentrations of lead. Z. Pflanzenphysiol. 81, 26–33 (1977)

    Google Scholar 

  • Mühlethaler, K.: Ultrastructure and formation of plant cell walls. Ann. Rev. Plant Physiol. 18, 1–24 (1967)

    Article  Google Scholar 

  • Ordin, L., Applewhite, T.H., Bonner, J.: Auxin-induced water uptake by Avena coleoptile sections. Plant Physiol. 31, 44–53 (1956)

    Google Scholar 

  • Penny, D.: On the possible role of hydrogen ions in auxin-induced growth. In: Regulation of cell membrane activities in plants. pp. 283–290 Marre, E., Cifferi, O. eds. Amsterdam: Elsevier 1977

    Google Scholar 

  • Pohl, R.: Zur Reaktionsweise des Wuchsstoffes bei der Zellstreckung. Z. Bot. 41, 343 (1953)

    Google Scholar 

  • Preston, R.D.: The physical biology of plant cell walls. London: Chapman and Hall 1974

    Google Scholar 

  • Rasmussen, G., Henry, W.: Effect of lead on the growth of sweet orange seedlings in nutrient culture solution. Proc. Soil Crop Sci. Soc. (Florida) 23, 70–74 (1963)

    Google Scholar 

  • Siegel, S.M.: The plant cell wall. London: Pergamon 1962

    Google Scholar 

  • Stoklasa, J.: De l'influence de l'uranium et du plomb sur la vegetation. C. R. Acad. Sci. 156, 153–155 (1913)

    Google Scholar 

  • Strogonov, B.P., Lapina, L.P.: A possible method for studying separately the toxic and osmotic action of salts. Fiziol. Rast. 11, 674–680 (1964)

    Google Scholar 

  • Stutzer, A.: Die Wirkung von Blei als Reizstoff für Planzen. J. Landwirtschaft 64, 1–8 (1916)

    Google Scholar 

  • Taylor, S.A.: Measuring soil-water potential. In: Methology of plant eco-physiology (Arid Zone Res. 25). 149–157. Eckardt, F.E. ed. UNESCO, Paris 1965

    Google Scholar 

  • Zegers, P.V., Harmet, K.H., Hanzely, L.: Inhibition of IAA-induced elongation in Avena coleoptile segments by lead; a physiological and an electron microscopic study. Cytobios. 15, 23–25 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lane, S.D., Martin, E.S. & Garrod, J.F. Lead toxicity effects on indole-3-ylacetic acid-induced cell elongation. Planta 144, 79–84 (1978). https://doi.org/10.1007/BF00385010

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00385010

Key words

Navigation