Skip to main content
Log in

The dynamics of leaf extension in plants with diverse altitudinal ranges

II. Field studies in Poa species between 600 and 3200 m altitude

  • Original Papers
  • Published:
Oecologia Aims and scope Submit manuscript

Summary

The dynamics of leaf extension in five species of Poa were studied with electronic auxanometers (LVDTs) along an elevational gradient from 600 to 3200 m in the Austrian Alps. Extension rates peak at midday at all elevations and rates at 20°C are almost twice as high at low elevation as compared with those from the highest sites. The low temperature threshold for leaf extension drops by 7 K over this range of elevation, with plants from the highest sites showing some extension around freezing point. Thus, there is a substantial adaptive adjustment in response of leaf extension to declining mean temperatures with increasing altitude, which is not paralleled by known altitudinal trends of photosynthetic responses in herbaceous plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Berry JA, Raison JK (1981) Responses of macrophytes to temperature. In: Pirson A, Zimmermann MH (eds) Physiological plant ecology. I. Responses to the physical environment. Encycl Plant Physiol, Vol 12A, Springer, Berlin Heidelberg New York, pp 277–338

    Google Scholar 

  • Billings WD, Mooney HA (1968) The ecology of arctic and alpine plants. Biol Rev 43:481–529

    Google Scholar 

  • Bliss LC (1962) Adaptations of arctic and alpine plants to environmental conditions. Arctic 15:117–144

    Google Scholar 

  • Gallagher JN, Biscoe PV, Saffell RA (1976) A sensitive auxanometer for field use. J Exp Bot 27:704–716

    Google Scholar 

  • Gallagher JN, Biscoe PV (1979) Field studies of cereal III. Barley leaf extension in relation to temperature, irradiance, and water potential. J Exp Bot 30:645–655

    Google Scholar 

  • Gallagher JN, Biscoe PV, Wallace JS (1979) Field studies of cereal leaf growth. IV. Winter wheat leaf extension in relation to temperature and leaf water status. J Exp Bot 30:657–668

    Google Scholar 

  • Haselwandter K, Hofmann A, Holzmann HP, Read DJ (1983) Availability of nitrogen and phosphorus in the nival zone of the Alps. Oecologia (Berlin) 57:266–269

    Google Scholar 

  • Körner Ch, Mayr R (1981) Stomatal behaviour in alpine plant communities between 600 and 2600 metres above sea level. In: Grace J, Ford ED, Jarvis PG (eds) Plants and their atmospheric environment. Blackwell, Oxford, pp 205–218

    Google Scholar 

  • Körner Ch (1982) CO2 exchange in the alpine sedge Carex curvula as influenced by canopy structure, light and temperature. Oecologia (Berlin) 53:98–104

    Google Scholar 

  • Körner Ch, Cochrane P (1983) Influence of plant physiognomy on leaf temperature on clear midsummer days in the Snowy Mountains, south-eastern Australia. Acta Oecol/Oecol Plant 4:117–124

    Google Scholar 

  • Larcher W (1980a) Klimastress im Gebirge-Adaptationstraining und Selektionsfilter für Pflanzen. Rheinsch-Westfälische Akad Wiss Vorträge N 291:49–88

    Google Scholar 

  • Larcher W (1980b) Physiological plant ecology, 2nd ed. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Larcher W (1983) Ökophysiologische Konstitutionseigenschaften von Gebirgspflanzen. Ber Dt Bot Ges 96:73–85

    Google Scholar 

  • Lorenz HP, Wiebe HJ (1980) Effect of temperature on photosynthesis of lettuce adapted to different light and temperature conditions. Scientia Horticulturae 13:115–123

    Google Scholar 

  • Moser W, Brzoska W, Zachhuber K, Larcher W (1977) Ergebnisse des IBP-Projekts “Hoher Nebelkogel 3184 m” Sitzungsber österr Akad Wiss, Mathem-naturwiss Kl, Abt I, 186:387–419

    Google Scholar 

  • Ollerenshaw JH, Baker RH (1981) Ecological and physiological adaptation of Trifolium repens L. to stressed environments in relation to improving pasture productivity in Britain. In: Barrett GW, Rosenberg R (eds) Stress effects on natural ecosystems. Wiley, New York, pp 71–78

    Google Scholar 

  • Ollerenshaw JH, Stewart WS, Gallimore J, Baker RH (1976) Low-temperature growth in grasses from northern latitudes. J Agric Sci 87:237–239

    Google Scholar 

  • Pisek A (1960) Pflazen der Arktis und des Hochgebirges. In: Ruhland W (ed) Handbuch der Pflanzenphysiologie, Vol. 2. Springer, Berlin Göttingen Heidelberg, pp 377–413

    Google Scholar 

  • Pisek A, Larcher W, Unterholzner R (1967) Kardinale Temperaturbereiche der Photosynthese und Grenztemperaturen des Lebens der Blätter verschiedener Spermatophyta. I. Temperaturminimum der Nettoassimilation, Gefrier- und Frostschadensbereiche der Blätter. Flora B 157:239–264

    Google Scholar 

  • Pisek A, Larcher W, Moser W, Pack I (1969) Kardinale Temperaturberiche der Photosynthese und Grenztemperaturen des Lebens der Blätter verschiedener Spermatophyten. III. Temperaturabhängigkeit und optimaler Temperaturbereich der Nettophotosynthese. Flora B 158:608–663

    Google Scholar 

  • Ruckenbauer P, Richter H (1980) Frictional resistances to water transport in water-cultured wheat plants. Phyton 20:37–45

    Google Scholar 

  • Stoddart JL, Thomas H, Lloyd EJ, Pollock CJ (1986) The use of a temperature-profiled position transducer for the study of low-temperature growth in gramineae. Planta 167:359–363

    Google Scholar 

  • Senn G (1922) Untersuchungen über die Physiologie der Alpenpflanzen. Verhandlg Schweiz Naturforsch Ges: 149–169

  • Squire GR, Ong CK (1983) Response to saturation deficit of leaf extension in a stand of pearl millet (Pennisetum typhoides S. & H.). I. Interaction with temperature. J Exp Bot 34:846–855

    Google Scholar 

  • Terry N, Waldron LJ, Taylor SE (1981) Environmental influences on leaf expansion. In: Dale JE, Milthorpe FL (eds) The growth and functioning of leaves. Cambridge Univ Press, Cambridge, pp 179–205

    Google Scholar 

  • Thomas H, Stoddart JL (1984) Kinetics of leaf growth in Lolium temulentum at optimal an chilling temperatures. Ann Bot 54:341–347

    Google Scholar 

  • Went FW (1953) The effect of temperature on plant growth. Ann Rev Plant Physiol 4:347–362

    Google Scholar 

  • Winkler E, Moser W (1967) Die Vegetationszeit in zentralalpinen Lagen Tirols in Abhängigkeit von den Temperatur- und Niederschlagsverhältnissen. Veröff Museum Ferd (Innsbruck) 47:121–147

    Google Scholar 

  • Woodward FI (1979a) The differential temperature responses of the growth of certain plant species from different altitudes. II. Analyses of the control and morphology of leaf extension and specific leaf area of Phleum bertolonii D.C. and P. alpinum L. New Phytol 82:397–405

    Google Scholar 

  • Woodward FI (1979b) The differential temperature responses of the growth of certain plant species from different altitudes. I. Growth analysis of Phleum alpinum L., P. bertolonii D.C., Sesleria albicans Kit. and Dactylis glomerata L. New Phytol 82:385–395

    Google Scholar 

  • Woodward FI, Körner Ch, Crabtree R (1986) The dynamics of leaf extension in plants with diverse altitudinal ranges. I. Temperatur responses at one altitude. Oecologia (Berlin) 70:222–226

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Körner, C., Woodward, F.I. The dynamics of leaf extension in plants with diverse altitudinal ranges. Oecologia 72, 279–283 (1987). https://doi.org/10.1007/BF00379279

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00379279

Key words

Navigation