Skip to main content
Log in

The phase equilibrium between sillimanite and andalusite as determined from lattice vibrations

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The thermodynamic equilibrium between sillimanite and andalusite has been determined from the measured phonon spectra. The corresponding aluminium silicate triple point is found to be in the range T=420° C-440° C and P=3.0–3.2 kbars. From the comparison of calorimetrically determined specific heat functions with those calculated from lattice vibrations additional effects of lattice faults of sillimanite are found to increase the temperature and pressure of the triple point considerably. The thermodynamic functions G(T), S(T) and H(T) are given for both structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abs-Wurmbach AI, Langer K (1975) Synthetic Mn3+-Kyanite and Viridine. (Al2−xMnskx/3+) SiO5, in the System Al2O3-MnO-MnO2-SiO2. Contrib Mineral Petrol 49:21–38

    Google Scholar 

  • Alvarez MA, Coy-Yll R (1978) Efecto Raman en mono cristal de Andalucita. Anales Quim 74:1375–1380

    Google Scholar 

  • Anderson PAM, Kleppa OJ (1969) The thermochemistry of the Kyanite-Sillimanite Equilibrium. Am J Sci 267:285–290

    Google Scholar 

  • Anderson PAM, Newton RC, Kleppa OJ (1977) The enthalpy change of Andalusite-Sillimanite-reaction and the Al2SiO5 Diagram. Am J Sci 277:585–593

    Google Scholar 

  • Born M, Huang K (1954) Dynamical theory of crystal lattices. Oxford University Press, New York

    Google Scholar 

  • Born M, v Karman T (1912) Über Schwingungen in Raumgittern. Phys Z 13:297–309

    Google Scholar 

  • Brown GC, Fyfe WS (1971) Kyanite — Andalusite — Equilibrium. Contrib Mineral Petrol 33:227–231

    Google Scholar 

  • Burnham CW, Buerger MJ (1961) Refinement of the crystal structure of andalusite. Z Kristallogr Mineral 115:269–290

    Google Scholar 

  • Burnham CW (1963) Refinement of the crystal structure of sillimanite. Z Kristallogr Mineral 118:127–148

    Google Scholar 

  • Charlu TV, Newton RC, Kleppa OJ (1975) Enthalpies of formation at 970 K of compounds in the system MgO-Al2O3-SiO2 from high temperature solution calorimetry. Geochim Cosmochim Acta 39:1487–1497

    Google Scholar 

  • Chatterjee ND (1972) The upper stability limit of the assemblage paraGonite+quartz and its natural occurrences. Contrib Mineral Petrol 34:288–303

    Google Scholar 

  • Crawford JH, Slifkin LM (1972) Point defects in solids: Vol. I General and Ionic Crystals. Plenum Press, New York London

    Google Scholar 

  • Day HW, Kumin HJ (1980) Thermodynamic analysis of the aluminium silicate triple point. Am J Sci 80:265–287

    Google Scholar 

  • Debye P (1912) Zur Theorie der spezifischen Wärme. Ann Phys Leipzig 39:789–839

    Google Scholar 

  • Fyfe WS (1967) Stability of the Al2SiO5 Polymorphs. Chem Geol 2:67–76

    Google Scholar 

  • Ganguly J (1969) Chloritoid stability and related paragenesis: theory, experiments and applications. Am J Sci 267:910–944

    Google Scholar 

  • Gilat G (1972) Analysis of methods for calculating spectral properties in solids. J Comput Phys 10:432–465

    Google Scholar 

  • Greenwood HJ (1972) AlIV-SiIV Disorder in sillimanite and its effect on phase relations of the aluminium silicate minerals (Mem). Geol Soc Am 32:553–571

    Google Scholar 

  • Hariga Y, Arima M (1975) Kyanite — sillimanite transition with excess quartz and corundum. J Fac Sci Hokkaido Univ Ser IV, 16:357–365

    Google Scholar 

  • Holdaway MJ (1971) Stability of andalusite and the aluminium silicate phase diagram. Am J Sci 271:97–131

    Google Scholar 

  • Holdaway MJ (1978) Significance of chloritoid-bearing and staurolitebearing rocks in the Picuris Range, New Mexico. Geol Soc Am Bull 89:1404–1414

    Google Scholar 

  • Holm JL, Kleppa OJ (1966) The enthalpy of formation of kyanite (Al2SiO5). Inorg Chem 5:1608–1622

    Google Scholar 

  • Iishi K, Salje E, Werneke Ch (1979) Phonon Spectra and Rigid-Ion Model Calculations on Andalusite. Phys Chem Mineral 4:173–188

    Google Scholar 

  • Kieffer SW (1979) Thermodynamics and lattice vibrations of minerals, vol 2. Vibrational characteristics of silicates. Rev Geophys Space Phys 17:20–34

    Google Scholar 

  • Maradudin AA, Montroll EW, Weiss GH (1963) Lattice dynamics in the harmonic approximation. Academic Press, New York

    Google Scholar 

  • Menard D, Donkhan JC (1978) Defects de réseau dans la sillimanite: Al2O3-SiO2. J Phys Lett 39: L 19-L 22

    Google Scholar 

  • Mott NF, Jones H (1936) The theory of the properties of metals and alloys. OUP, Oxford

    Google Scholar 

  • Navrotsky A, Newton RC, Kleppa OJ (1973) Sillimanite-disordering enthalpy by calorimetry. Geochim Cosmochim Acta 37:2497–2508

    Google Scholar 

  • Newton RC (1966) Kyanite-sillimanite equilibrium at 750° C. Science 151:1222–1225

    Google Scholar 

  • Newton RC (1969) Some high-pressure hydrothermal experiments on severly ground kyanite and sillimanite. Am J Sci 267:278–284

    Google Scholar 

  • Pankratz LB, Kelley KK (1964) High temperature heat contents and entropies of Andalusite, Kyanite and Sillimanite. Bureau of mines, report of investigations No 6370

  • Richardson SW, Gilbert MC, Bell PM (1969) Experimental determination of the kyanite-andalusite and andalusite-sillimanite equilibria; the aluminium silicate triple point. Am J Sci 267:259–272

    Google Scholar 

  • Sahl K, Seifert F (1973) The relationship of fibrolite to sillimanite. Nat Phys Sci 241:46–47

    Google Scholar 

  • Salje E, Hoppmann G (1980) High-pressure transformations of tungsten trioxide. High Temp — High Pressures 12:213–216

    Google Scholar 

  • Salje E, Iishi K (1977) Ferroelastic phase transitions in lead phosphatevanadate Pb3(PxV1−xO4)2. Acta Crystallogr A 33:399–408

    Google Scholar 

  • Salje E, Viswanathan K (1976) The phase diagram Calcite-Aragonite as derived from the crystallographic properties. Contrib Mineral Petrol 55:55–67

    Google Scholar 

  • Shearer JA, Kleppa OJ (1973) The enthalpies of formation of MgAl2O4, MgSiO3, Mg2SiO4 and Al2SiO5 by oxide melt solution calorimetry. J Inorg Nucl Chem 35:1073–1078

    Google Scholar 

  • Striefler ME, Barsch GR (1975) Lattice dynamics of α-quartz. Phys Rev B 12:4553–4566

    Google Scholar 

  • Taylor WH (1928) The structure of sillimanite and mullite. Z Kristallogr Mineral 66:503–521

    Google Scholar 

  • Taylor WH (1929) The structure of andalusite Al2SiO5. Z Kristallogr Mineral 71:205–218

    Google Scholar 

  • Todd SS (1950) Heat capacities at low temperatures and entropies at 298.16 K of Andalusite, Kyanite and Sillimanite. J Am Chem Soc 72:472–473

    Google Scholar 

  • Vaughan MT, Weidner DJ (1978) The relationship of elasticity and crystal structure in andalusite and sillimanite. Phys Chem Minerals 3:133–144

    Google Scholar 

  • Waldbaum DR (1965) Thermodynamic properties of mullite, andalusite, kyanite and sillimanite. Am Mineral 50:186–195

    Google Scholar 

  • Walker U (1976) Schwingungsspektroskopische Untersuchungen und Normalkoordinatenanaylse an Andalusit und Sillimanit. Diss Freiburg i Br

  • Weill DF (1966) Stability relations in the Al2O3-SiO2-system calculated from solubilities in the Al2O3-SiO2-Na3AlF6-system. Geochim Cosmochim Acta 30:223–237

    Google Scholar 

  • Werneke Ch, Salje E (1980) A simple refinement routine for infrared reflection spectra based on Kramers — Kronig analysis and classical oscillator fit. Infrared Phys 20:159–165

    Google Scholar 

  • Winter JK, Ghose S (1979) Thermal expansion and high-temperature crystal chemistry of the Al2SiO5 polymorphs. Am Mineral 64:573–586

    Google Scholar 

  • Woods ADB, Brockhouse BN, Cowley RA, Cochran W (1963) Lattice dynamics of Alkali Halide Crystals. II. Experimental studies of KBr and Na I. Phys Rev 131:1025–1039

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salje, E., Werneke, C. The phase equilibrium between sillimanite and andalusite as determined from lattice vibrations. Contr. Mineral. and Petrol. 79, 56–67 (1982). https://doi.org/10.1007/BF00376961

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00376961

Keywords

Navigation