Skip to main content
Log in

Towards a more practical two-feldspar geothermometer

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The thermodynamic basis of several recent attempts to formulate a simple two-feldspar geothermometer is discussed, together with a review of earlier empirical geothermometers and ones based on experimental studies in the ternary feldspar system. It is shown that double-binary thermometers which involve the combination of regular solution mixing models for the binary alkali feldspar system with ideal mixing in plagioclases do not give a satisfactory representation of two-feldspar relations, especially for albite-rich compositions where a critical point exists. Thermometers based on mixing parameters for ordered alkali feldspar frameworks are even more unjustified both because low-plagioclases are certainly non-ideal, and because of uncertainty in knowing the degree of Al-Si order in the alkali feldspar when exchange equilibrium was achieved. A ‘thermodynamic’ thermometer requires knowledge of ternary activities which are at present unknown.

Experimental determinations of relationships in the ternary feldspar system are reviewed and the correct general form of the thermometer constructed using mainly the experimental data of Seck (1971a) and Smith and Parsons (1974). Chemographic tests for equilibrium between feldspar pairs are suggested and petrographie features discussed.

In an appendix new values are given of Margules parameters calculated for binary disordered alkali feldspars from recent solvus data up to 15 kbars, and their physico-chemical basis examined. We suggest that accurate representations of the mixing properties of disordered alkali feldspars using Margules parameters are at present premature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akizuki N, Sunagawa I (1978) Study of the sector structure in adularia by means of optical microscopy, infra-red absorption, and electron microscopy. Mineral Mag 42: 453–462

    Google Scholar 

  • Bachinski SW, Müller G (1971) Experimental determination of the microcline-low albite solvus. J Petrol 12:329–356

    Google Scholar 

  • Barth TFW (1934) Temperaturen i lava og magmamasser, sam et nytt geologisk termometer. Naturen 6:187–192

    Google Scholar 

  • Barth TFW (1951) The feldspar geological thermometers. Neues Jahrb Mineral 82:143–154

    Google Scholar 

  • Barth TFW (1956) Studies in gneiss and granite. Norske Vidensk Acad Oslo, 1 Mat — Naturv Klasse, 1: 263–274

    Google Scholar 

  • Barth TFW (1962) The feldspar geologic thermometer. Nor Geol Tidsskr 42: 330–339

    Google Scholar 

  • Barth TFW (1968) Additional data for the two-feldspar geothermometer. Lithos 1: 305–306

    Google Scholar 

  • Carmichael ISE (1965) Trachytes and their feldspar phenocrysts. Mineral Mag 34:107–125

    Google Scholar 

  • Carmichael ISE, Turner FJ, Verhoogen J (1974) Igneous Petrology. New York: McGraw-Hill

    Google Scholar 

  • De Pieri R, Quareni S (1973) The crystal structure of an anorthoclase: an intermediate alkali feldspar. Acta Crystallogr B 29:1483–1487

    Google Scholar 

  • Fenn PM, Brown GE (1977) Crystal structure of a synthetic compositionally intermediate, hypersolvus alkali feldspar: evidence for Na, K site ordering. Z Kristallogr 145: 124–145

    Google Scholar 

  • Ferry JM (1978) Fluid interaction between granite and sediment during metamorphism, south-central Maine. Am J Sci 278:1025–1056

    Google Scholar 

  • Goldsmith JR, Newton RC (1974) An experimental determination of the alkali feldspar solvus. In: MacKenzie WS and Zussman J (eds) The Feldspars. Manchester: Manchester University Press, pp 337–359

    Google Scholar 

  • Hamilton DL (1969) Solid solution of anorthite in alkali feldspars at 700° and 900° C. Progr. Exp Petrol NERC, pp 51–52

  • Hovis GE (1977) Unit cell dimensions and molar volumes for a sanidine-analbite ion-exchange series. Am Mineral 62:672–679

    Google Scholar 

  • Hovis GE, Waldbaum DR (1977) A solution calorimetric investigation of K-Na mixing in a sanidine-analbite ion exchange series. Am Mineral 62: 680–686

    Google Scholar 

  • Iiyama JT (1965) Influence des anions sur les équilibres d'échange d'ions Na-K dans les feldspaths alcalins a 600° C sous un pression de 1000 bars. Bull Soc Fr Mineral Cristallogr 88: 618–622

    Google Scholar 

  • Iiyama JT (1966) Contribution à l'étude des équilibres sub-solidus du système ternaire orthose-albite-anorthite à l'aide des réactions d'échange d'ions Na-K au contact d'une solution hydrothermale. Bull Soc Fr Mineral Cristallogr 89: 442–454

    Google Scholar 

  • Iiyama JT, Wyart J, Sabatier G (1963) Equilibre des feldspaths alcalins et des plagioclases a 500, 600, 700 et 800° C sous une pression d'eau de 1000 bars. CR Acad Sci Paris 256: 5016–5020

    Google Scholar 

  • Jasmund K, Seck HA (1972) Partition of elements in co-existing feldspars as determined by experiment and in trachytic rocks. Proc 24th Int Geol Congr Sec 10: 78–84

    Google Scholar 

  • Johannes W (1979) Ternary feldspars: Kinetics and possible equilibria at 800° C. Contrib Mineral Petrol 68: 221–230

    Google Scholar 

  • Lagache M, Weisbrod A (1977) The system: Two alkali feldspars — KCl-NaCl-H2O at moderate to high temperatures and low pressures. Contrib Mineral Petrol 62: 77–102

    Google Scholar 

  • Lindsley DH (1967a) Melting relations of plagioclase at high pressures. Carnegie Inst Washington Yearb 65: 204–205

    Google Scholar 

  • Lindsley DH (1967b) P-T projection for part of the system kalsilitesilica. Carnegie Inst Washington Yearb 65: 244–247

    Google Scholar 

  • MacKenzie WS (1957) The crystalline modifications of NaAlSi3O8. Am J Sci 255: 481–516

    Google Scholar 

  • Müller G (1971) Der Einfluß der Al, Si-Verteilung auf die Mischungslücke der Alkalifeldspäte. Contrib Mineral Petrol 34: 73–79

    Google Scholar 

  • Newton RC, Charlu TV, Kleppa OJ (1980) Thermochemistry of the high structural state plagioclases. Geochim Cosmochim. Acta 44: 933–944

    Google Scholar 

  • Nicholls J, Carmichael ISE (1969) A commentary on the AbsarokiteShoshonite-Banakite series of Wyoming, USA. Schweiz Mineral Petrogr Mitt 49: 47–64

    Google Scholar 

  • Norris GH (1972) Experimental studies on ternary feldspars. Progr Exp Petrol NERC, Ser D, No 2: 15–19

    Google Scholar 

  • O'Hara MJ, Yarwood G (1978) High pressure-temperature point on an Archaean geotherm, implied magma genesis by crustal anatexis, and consequences for garnet-pyroxene thermometry and barometry. Philos Trans R Soc London A 288: 441–456

    Google Scholar 

  • O'Hara MJ, Barnicoat A (1978) High temperatures and great pressures during the late Archaean metamorphism at Scourie. Progr Exp Petrol NERC, Ser D, No 11: 179–181

    Google Scholar 

  • Orville PM (1963) Alkali ion exchange between vapor and feldspar phases. Am J Sci 261: 201–237

    Google Scholar 

  • Parsons I (1978) Alkali-feldspars: Which solvus? Phys Chem Minerals 2: 199–213

    Google Scholar 

  • Perchuk LL, Ryabchikov ID (1968) Mineral equilibria in the system nepheline-alkali feldspar-plagioclase and their petrological significance. J Petrol 9: 123–167

    Google Scholar 

  • Perchuk LL, Zyrianov VN, Podlesskii KK, Kotelnikov AR, Arano-vich LJa, Lavrentjeva IV (1978) Excess mixing energies of minerals of variable composition. Phys Chem Minerals 3: 303–305

    Google Scholar 

  • Powell M (1978) The crystallization history of the Igdlerfigssalik nepheline syenite intrusion. Greenland. Lithos 11:99–120

    Google Scholar 

  • Powell R, Powell M (1977) Plagioclase-alkali feldspar geothermometry revisited. Mineral Mag 41: 253–256

    Google Scholar 

  • Rahman S, MacKenzie WS (1969) The crystallization of ternary feldspars: a study from natural rocks. Am J Sci 267A (Schairer vol): 391–406

    Google Scholar 

  • Saxena SK, Ribbe PH (1972) Activity composition relations in feldspars. Contrib Mineral Petrol 37: 131–138

    Google Scholar 

  • Seck HA (1971a) Koexistierende Alkalifeldspäte und Plagioclase im System NaAlSi3O8-KAlSi3O8-CaAl2Si2O8-H2O bei Temperaturen von 650° C bis 900° C. Neues Jahrb Mineral, Abh 115: 315–345

    Google Scholar 

  • Seck HA (1971b) Der Einfluß des Drucks auf die Zusammensetzung koexistierender Alkalifeldspäte und Plagioclase im System NaAlSi3O8-KAlSi3O8-CaAl2Si2O8-H2O. Contrib Mineral Petrol 31: 67–86

    Google Scholar 

  • Seck HA (1972) The influence of pressure on the alkali-feldspar solvus from peraluminous and persilicic materials. Fortschr Mineral 49: 31–49

    Google Scholar 

  • Smith JV (1974) Feldspar Minerals, Vol 1. Berlin: Springer-Verlag

    Google Scholar 

  • Smith P, Parsons I (1974) The alkali-feldspar solvus at 1 Kilobar water-vapour pressure. Mineral Mag 39: 747–767

    Google Scholar 

  • Sørensen H (1962) On the occurrence of steenstrupine in the Ilimaussaq massif, Southwest Greenland. Medd om Grønland Bd 167, Nr. 1. (Bull Grønlands Geol Unders No 32)

  • Stewart DB, Wright TL (1974) Al/Si order and symmetry of natural potassic feldspars and the relationship of strained cell parameters to bulk composition. Bull Soc Fr Mineral Cristallogr 97: 356–377

    Google Scholar 

  • Stormer JC JR (1975) A practical two-feldspar geothermometer. Am Mineral 60: 667–674

    Google Scholar 

  • Stormer JC JR, Whitney JA (1977) Two-feldspar geothermometry in granulite facies metamorphic rocks. Contrib Mineral Petrol 65: 123–133

    Google Scholar 

  • Thompson JB JR (1967) Thermodynamic properties of simple solutions. In: Abelson PH (ed). Researches in Geochemistry II. New York: Wiley, pp. 340–361

    Google Scholar 

  • Thompson JB JR, Hovis GL (1979) Entropy of mixing in sanidine. Am Mineral 64: 57–65

    Google Scholar 

  • Thompson JB JR, Waldbaum DL (1969a) Mixing properties of sanidine crystalline solutions: III. Calculations based on two-phase data. Am Mineral 54: 811–838

    Google Scholar 

  • Thompson JB JR, Waldbaum, DL. (1969b) Analysis of the twophase region halite-sylvite in the system NaCl-KCl. Geochim Cosmochim Acta 33: 671–690

    Google Scholar 

  • Traetteberg A, Flood H (1972) Alkali ion exchange equilibria between feldspar phases and molten mixtures of potassium and sodium chloride. K Tekniska Hogskolans Handlingar 296: 609–618

    Google Scholar 

  • Tullis J, Yund RA (1979) Calculation of coherent solvi for alkali feldspar, iron-free clinopyroxene, nepheline-kalsilite and hematiteilmenite. Am Mineral 64: 1063–1074

    Google Scholar 

  • Viswanathan K (1971) A new X-ray method to determine the anorthite content and structural state of plagioclases. Contrib Mineral Petrol 30: 332–335

    Google Scholar 

  • Waldbaum DR, Robie RA (1971) Calorimetric investigation of Na-K mixing and polymorphism in the alkali feldspars. Z Kristallogr 134: 381–420

    Google Scholar 

  • Waldbaum DR, Thomspon JB JR (1969) Mixing properties of sanidine crystalline solutions: IV. Phase diagrams from equations of state. Am Mineral 54: 1274–1298

    Google Scholar 

  • Whitney, JA, Stormer JC JR (1976) Geothermometry and geobarometry in epizonal granitic intrusions: a comparison of iron-titanium oxides and co-existing feldspars. Am Mineral 61: 751–761

    Google Scholar 

  • Whitney JA, Stormer JC JR (1977a) The distribution of NaAlSi3O8 between co-existing microcline and plagioclase and its effect on geothermometric calculations. Am Mineral 62: 687–691

    Google Scholar 

  • Whitney JA, Stormer JC JR (1977b) Two feldspar geothermometry, geobarometry in mesozonal granitic intrusions: three examples from the Piedmont of Georgia. Contrib Mineral Petrol 63: 51–64

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, W.L., Parsons, I. Towards a more practical two-feldspar geothermometer. Contr. Mineral. and Petrol. 76, 369–377 (1981). https://doi.org/10.1007/BF00371478

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00371478

Keywords

Navigation