Skip to main content
Log in

Effects of temperature and salinity acclimation of adults on larval survival, physiology, and early development of Lytechinus variegatus (Echinodermata: Echinoidea)

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Larval survival and developmental rates of Lytechinus variegatus (Lamarck) were determined as a function of temperature and salinity in two experiments by: (1) directly transferring fertilized eggs to 35, 30, 27.5, 25, 20, 15, and 10‰S seawater at 18 and 23°C, and (2) acclimation of adult sea urchins to the conditions described above for 1 to 4 wk prior to spawning. Developmental rates and percent survival of larvae prior to metamorphosis decreased at salinities below 35‰ (Q10 values for metamorphosis=0.380 to 0.384). Temperature and salinity significantly (P<0.05) affected metabolic rates of L. variegatus plutei. These results show that L. variegatus larvae are stenohaline when compared to larvae of other echinoderm species. LC50 values (‰S), developmental rates, and survival to metamorphosis indicate that acclimation of adult sea urchins to lower salinity prior to spawing and fertilization does not enhance development or survival of embryos exposed to low salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  • Barrett, B. B. (1971). Cooperative Gulf of Mexico estuarine inventory and study. Louisiana. Phase II, hydrology, and Phase III, sedimentology. Louisiana Wildlife and Fisheries Commission, New Orleans

    Google Scholar 

  • Bayne, B. L. (1985). Responses to environment stress: tolerance, resistance and adaption. In: Gray, J. S., Christiansen, M. E. (eds) Marine biology of polar regions and effects of stress on marine organisms. John Wiley & Sons Ltd, London, p. 331–349

    Google Scholar 

  • Bayne, B. L., Moore, M. N., Widdows, J., Livingstone, D. R., Salkeld, P. (1979). Measurements of the responses of individuals to environmental stress and pollution: studies with bivalve molluscs. Phil Trans. R. Soc. 286: 563–581

    Google Scholar 

  • Binyon, J. (1961). Salinity tolerance and permeability to water of the starfish Asterias rubens L. J. mar. biol. Ass. U.K. 41: 161–174

    Google Scholar 

  • Binyon, J. (1966) Salinity tolerance and ionic regulation. In: Boolootion, R. A. (ed.) Physiology of Echinodermata. Interscience Publishers, New York, p. 359–377

    Google Scholar 

  • Binyon, J. (1972). Physiology of Echinodermata. Pergamon Press Ltd, Oxford

    Google Scholar 

  • Calabrese, A., Davis, H. C. (1970). Tolerance and requirements of embryos and larvae of bivalve mollusks. Helgoländer wiss. Meeresunters. 20: 553–564

    Google Scholar 

  • Collias, E. E., McGray, N., Barnes, C. A. (1974). Atlas of physical and chemical properties of Puget Sound and its approaches. University of Washington Press, Seattle

    Google Scholar 

  • Drouin, G., Himmelman, J. H., Beland, P. (1985). Impact of tidal salinity fluctuations on echinoderm and mollusc populations. Can. J. Zool. 63: 1377–1387

    Google Scholar 

  • Finney, D. J. (1971). Probit analysis. 3rd edn. Cambridge University Press, London

    Google Scholar 

  • Fuhrman, J., Fuhrman, A. (1959). Oxygen consumption of animals and tissues as a function of temperature. J. gen Physiol. 42: 715–722

    Google Scholar 

  • Gezelius, G. (1963). Adaptation of the sea urchin Psammechinus miliaris to different salinities. Zool. Bidr. Upps. 35: 329–337

    Google Scholar 

  • Grasshoff, H., Johannsen, H. (1972) A new sensitive and direct method for the automatic determination of ammonia in seawater. J. Cons. int. Explor. Mer 34: 516–521

    Google Scholar 

  • Greenwood, P. J., Bennett, T. (1981). Some effects of temperaturesalinity combinations on the early development of the sea urchin Parechinus angulosus (Leske). Fertilization. J. exp. mar. Biol. Ecol. 51: 119–131

    Google Scholar 

  • Guillard, R. R. L. (1975). Culture of phytoplankton for feeding marine invertebrates. In: Smith, W. L., Chanley, M. H. (eds.) Culture in marine animals. Plenum Press, New York, p. 29–30

    Google Scholar 

  • Hendler, G. L. (1973). Northwest Atlantic amphiurid brittlestars, Amphioplus abditus (Verrill), Amphioplus macilentus (Verrill), and Amphioplus sepultus n. sp. (Ophiuroidea: Echinodermata): systematics, zoologeography, annual periodicities and larval adaptations. Ph.D. disseration. University of Connecticut, Storrs

    Google Scholar 

  • Hendler, G. L. (1977). Development of Amphioplus abditus (Verrill) (Echinodermata, Ophiuroidea): I. Larval biology. Biol. Bull. mar. biol. Lab., Woods Hole 152: 51–63

    Google Scholar 

  • Hewatt, W. G. (1951). Salinity studies in Louisiana coastal embayments west of the Mississippi River. Final Report of Project Nine. Texas A&M Research Foundation, College Station

    Google Scholar 

  • Himmelman, J. H., Lavergne, Y., Axelsen, F., Cardinal, A., Bourget, E. (1983). Sea urchins in the St. Lawrence estuary Canada, their abundance size structure and suitability for commercial exploitation. Can. J. Fish. aquat. Sciences 40: 474–486

    Google Scholar 

  • Hoar, W. S. (1969). Reproduction. In: Hoar, W. S., Randall, D. J. (eds.), Fish physiology. Academic Press, New York, p. 1–72

    Google Scholar 

  • Johns, D. M. (1981 a). Physiological studies on Cancer irroratus larvae. II. Effects of temperature and salinity on survival, development rate and size. Mar. Ecol. Prog. Ser. 5: 75–83

    Google Scholar 

  • Johns, D. M. (1981 b). Physiological studies on Cancer irroratus larvae. II. Effects of temperature and salinity on physiological performance. Mar. Ecol. Prog. Ser. 6: 309–315

    Google Scholar 

  • Johns, D. M. (1982). Physiological studies on Cancer irroratus larvae. III. Effects of temperature and salinity on the partitioning of energy resources during development. Mar. Ecol. Prog. Ser. 8: 75–85

    Google Scholar 

  • Klinger, T. S., Hsieh, H. L., Pangallo, R. A., Chen, C. P., Lawrence, J. M. (1986). The effects of temperature on feeding, digestion, and absorption of Lytechinus variegatus (Lamarck (Echinodermata: Echinoidea). Physiol. Zoöl. 59: 332–336

    Google Scholar 

  • Kozloff, E. N. (1974). Key to the marine invertebrates of Puget Sound, the San Juan Archipelago, and adjacent regions. University of Washington Press, Seattle

    Google Scholar 

  • Laughlin, R. (1983). The effects of temperaure and salinity on larval growth of the horseshoe crab Limulus polyphemuns. Biol. Bull. mar. biol. Lab., Woods Hole 164: 93–103

    Google Scholar 

  • Lawrence, J. M. (1975). The effect of temperature-salinity combinations on functional well-being of adult Lytechinus variegatus (Lamarck) (Echinodermata, Echinoidea). J. exp. mar. Biol. Ecol. 18: 271–275

    Google Scholar 

  • Loosanoff, V. L. (1945). Effect of seawater of reduced salinities upon the starfish Asterias forbesi of Long Island Sound. Trans. Conn. Acad. Arts Sci. 36: 813–833

    Google Scholar 

  • Lucas, J. S., Costlow, J. D., Jr. (1979). Effects of various temperature cycles on the larval development of the gastropod mollusc Crepidula fornicata. Mar. Biol. 51: 111–117

    Google Scholar 

  • Lucke, B., McCutcheon, M. (1932). The living cell as an asmotic system and its permeability to water. Physiol. Rev. 12: 68–139

    Google Scholar 

  • MacInnes, J. R., Calabrese, A. (1979). Combined effects of salinity, temperature, and copper on embryos and early larvae of the American oyster, Crassostrea virginica. Archs envir. Contam. Toxic. 8: 553–562

    Google Scholar 

  • Mangum, C. F., Sassaman, C. (1969). Temperature sensitivity of active and resting metabolism in a polychaetous annelid. Comp. Biochem. Physiol. 30: 111–116

    Google Scholar 

  • Moore, H. B., Lopez, N. N. (1972). Factors controlling variation in the seasonal spawning pattern of Lytechinus variegatus. Mar. Biol. 14: 275–280

    Google Scholar 

  • Mortensen, T. H. (1943). Monograph of Echinoidea III. 2. Camarodonta. I. Orthopsidae, Glyphooyphidae, Temnopleuridae and Toxopneustidae. C. A. Reitzel, Copenhangen

    Google Scholar 

  • Oglesby, L. C. (1981). Volume regulation in acquatic invertebrates. J. exp. Zool. 215: 289–301

    Google Scholar 

  • Pagett, R. M. (1978). Some physiological and ecological aspects of the Ophiuroidea. Ph.D. thesis. University of London, London

    Google Scholar 

  • Petersen, J. A., Almeida, A. M. (1976). Effects of salinity and temperature on the development and survival of the echinoids Arbacia, Echinometra and Lytechinus. Thalassia jugosl. 12: 297–298

    Google Scholar 

  • Prosser, C. L. (1986). Adaptational biology: molecules to organisms. John Wiley & Sons, New York

    Google Scholar 

  • Roller, R. A., Stickle, W. B. (1985). Effects of salinity on larval tolerance and early developmental rates of four species of echinoderms. Can. J. Zool. 63: 1531–1538

    Google Scholar 

  • Roller, R. A., Stickle, W. B. (1989). Temperature and salinity effects on the intracapsular development, metabolic rates, and survival to hatching of Thais haemastoma (Gray) (Prosobranchia: Muricidae) under laboratory conditions. J. exp. mar. Biol. Ecol. 125: 235–251

    Google Scholar 

  • Roller, R. A., Stickle, W. B. (1993). Does salinity acclimation affect the larval tolerance, physiology, and early development of Strongylocentrotus droebachiensis (O. F. Müller, 1776) and S. pallidus (G. O. Sars, 1871) (Echinodermata: Echinoidea)? (In preparation)

  • Sabourin, T. D., Stickle, W. B. (1981). Effects of salinity on respiration and nitrogen excretion in two species of echinoderms. Mar. Biol. 65: 91–99

    Google Scholar 

  • SAS Institute Inc. (1985 a). SAS for linear models — a guide to the ANOVA and GLM procedures. SAS Institute Inc., Cary, North Carolina

    Google Scholar 

  • SAS Institute Inc. (1985 b). SAS users guide: statistics. Version 5 edn. SAS Institute Inc., Cary, North Carolina

    Google Scholar 

  • Schmidt-Nielsen, K. (1980). Animal physiology: adaptation and environment. Cambridge University Press, London

    Google Scholar 

  • Serafy, K. (1973). Variation in the polytypic sea urchin Lytechinus variegatus (Lamarck, 1816) in the western Atlantic (Echinodermata; Echinoidea). Bull. mar. Sci. 23: 525–534

    Google Scholar 

  • Serafy, K. (1979). Echinoids (Echinoidea: Echinodermata). Mem. Hourglass Cruises. 5: 1–120 (Fla mar. Res. Lab., St Petersburg)

    Google Scholar 

  • Shirley, T. C., Stickle, W. B. (1982). Responses of Leptasterias hexactis (Echinodermata: Asteroidea) to low salinity. I. Survival, activity, feeding, growth and absorption efficiency. Mar. Biol. 69: 147–154

    Google Scholar 

  • Silverstone, H. (1957). Estimating the logistic curve. J. Am. statist. Ass. 52: 567–577

    Google Scholar 

  • Snedecor, G. W., Cochran, W. G. (1980). Statistical methods. 7th ed. Iowa State University Press, Ames, p. 290–291

    Google Scholar 

  • Sokal, R. R., Rohlf, F. J. (1981). Biometry. The principles and practice of statistics in biological research. 2nd ed. W. H. Freeman & Co., New York

    Google Scholar 

  • Solórzano, L. (1969). Determination of ammonia in natural waters by the phenol hypochlorite method. Limnol. Oceanogr. 14: 799–801

    Google Scholar 

  • Stancyk, S. E., Shaffer, P. L. (1977). The salinity tolerance of Ophiothrix angulata (Say) (Echinodermata: Ophiuroidea) in latitudinally separate populations. J. exp. mar. Biol. Ecol. 29: 35–43

    Google Scholar 

  • Steel, R. G. D., Torrie, J. H. (1980). Principles and procedures of statistics: a biomedical approach. McGraw-Hill Inc., New York

    Google Scholar 

  • Stickle, W. B. (1985). Effects of environmental factor gradients on scope for growth in several species of carnivorous marine invertebrates. In: Gray, J. S., Christiansen, M. E. (eds.) Marine biology of polar regions and effects of stress on marine organisms. John Wiley & Sons Ltd., London, p. 601–616

    Google Scholar 

  • Stickle, W. B., Denoux, G. J. (1976). Effects of in situ tidal salinity fluctuations on osmotic and ionic composition of body fluid in Southeastern Alaska rocky intertidal fauna. Mar. Biol. 37: 125–135

    Google Scholar 

  • Stickle, W. B., Diehl, W. J. (1987). Effects of salinity on echinoderm. In: Jangoux, M., Lawrence, J. M. (eds.) Echinoderm studies. II. A. A. Balkema, Rotterdam, p. 235–285

    Google Scholar 

  • Strathmann, M. (1987). Reproduction and development of marine invertebrates of the northern Pacific coast: data and methods for the study of eggs, embryos, and larvae. University of Washington Press, Seattle

    Google Scholar 

  • Strathmann, R. (1978). Length of pelagic period in echinoderms with feeding larvae from the Northeast Pacific. J. exp. mar. Biol. Ecol. 34: 23–27

    Google Scholar 

  • Strickland, J. D. H., Parsons, T. R. (1972). A practical handbook of seawater analysis. 2nd edn. Bull. Fish. Res. Bd Can. 167: 1–310

  • Thomas, L. P. (1961). Distribution and salinity tolerance in the amphiurid brittlestar Ophiophragmus filograneus (Lyman 1875). Bull. mar. Sci. Gulf Caribb. 11: 158–160

    Google Scholar 

  • Thomson, R. E. (1981). Oceanography of the British Columbia Coast. Department of Fisheries and Oceans. Ottawa, Ontario

    Google Scholar 

  • Thorson, G. (1950). Reproductive and larval ecology of marine bottom invertebrates. Biol. Bull. mar. biol. Lab., Woods Hole 25: 1–45

    Google Scholar 

  • Turner, R. L., Meyer, C. E. (1980). Salinity tolerance of the brackish-water echinoderm Ophiophragmus filograneus (Ophiuroidea). Mar. Ecol. Prog. Ser. 2: 249–256

    Google Scholar 

  • Valen, E. (1958). Oxygen consumption in relation to temperature in some poikilotherms. Acta physiol. scand. 42: 358–362

    Google Scholar 

  • Valentine, J. F., Heck, K. L. (1991). The role of sea urchin grazing in regulating subtropical seagrass meadows: evidence from field manipulations in the northern Gulf of Mexico. J. exp. mar. Biol. Ecol. 154: 215–230

    Google Scholar 

  • Vernberg, W. B., Vernberg, F. J. (1972). Environmental physiology of marine animals. Springer-Verlag, New York

    Google Scholar 

  • Watts, S. A., Scheibling, R. E., Marsh, A. G., McClintock, J. B. (1982). Effects of temperature and salinity on larval development of sibling species of Echinaster (Echinodermata: Asteroidea) and their hybrids. Biol. Bull. mar. biol. Lab., Woods Hole 163: 348–354

    Google Scholar 

  • Widdows, J., Phelps, D. K., Galloway, W. (1981). Measurement of physiological condition of mussels transplanted along a pollution gradient in Narragansett. Bay. Mar. envirl Res. 4: 181–194

    Google Scholar 

  • Wieser, W. (1973). Temperature relations of ectotherms: a speculative review. In: Wieser, W. (ed.) Effects of temperature on octothermic organisms. Springer-Verlag, New York, p. 1–23

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by N. H. Marcus, Tallahassee

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roller, R.A., Stickle, W.B. Effects of temperature and salinity acclimation of adults on larval survival, physiology, and early development of Lytechinus variegatus (Echinodermata: Echinoidea). Marine Biology 116, 583–591 (1993). https://doi.org/10.1007/BF00355477

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00355477

Keywords

Navigation