Skip to main content
Log in

Effects of nondensifying inclusions on the densification and microstructure of zinc oxide matrix composites

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The densification and microstructure development of ZnO containing Zn7Sb2O12, ZrO2, and aggregated ZnO were investigated to elucidate the effect of nondensifying inclusions on the sintering of ceramic/ceramic composites. The inclusion retarded the densification, and the degree of retardation was found to depend on the chemical species of inclusion; Zn7Sb2O12 had the largest effect, followed by ZrO2 and then aggregated ZnO last. The experimental results for aggregated ZnO was explained by the theory which predicts the generation of backstresses. The backstresses give a less significant effect on the densification. For Zn7Sb2O12 and ZrO2, the microstructure of the matrix varied with distance from an inclusion particle; much porosity was observed in the region surrounding the inclusion. Circumferential voids, which are responsible for the suppression of densification, form during the initial stage of sintering. Inclusion particles generate an anchoring effect which retards the densification of the matrix immediately surrounding the inclusion particle during the intermediate stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. EVANS, J. Amer. Ceram. Soc. 65 (1982) 497.

    Article  CAS  Google Scholar 

  2. R. RAJ and R. K. BORDIA, Acta Metall. 32 (1984) 1003.

    Article  Google Scholar 

  3. C. H. HSUEH, A. G. EVANS, R. M. CANNON and R. J. BROOK, ibid. 34 (1986) 927.

    Article  CAS  Google Scholar 

  4. C. H. HSUEH, J. Mater. Sci. 21 (1986) 2067.

    Article  CAS  Google Scholar 

  5. F. F. LANGE, J. Mater. Res. 2 (1987) 59.

    Article  CAS  Google Scholar 

  6. G. W. SCHERER, J. Amer. Ceram. Soc. 70 (1987) 719.

    Article  CAS  Google Scholar 

  7. R. K. BORDIA and G. W. SCHERER, Acta Metall. 36 (1988) 2411.

    Article  CAS  Google Scholar 

  8. S. SUNDARESAN and I. A. AKSAY, J. Amer. Ceram. Soc. 73 (1990) 54.

    Article  CAS  Google Scholar 

  9. O. SUDRE, B. BAO, B. FAN, F. F. LANGE and A. G. EVANS, ibid. 75 (1992) 525.

    Article  CAS  Google Scholar 

  10. K. D. REEVE, Amer. Ceram. Soc. Bull. 42 (1963) 452.

    CAS  Google Scholar 

  11. W. H. RHODES, ibid. 64 (1981) 19.

    Article  CAS  Google Scholar 

  12. F. F. LANGE and M. METCALF, ibid. 66 (1983) 389.

    Article  Google Scholar 

  13. B. KELLETT and F. F. LANGE, ibid. 67 (1984) 369.

    Article  CAS  Google Scholar 

  14. R. K. BORDIA and R. RAJ, in Proceedings of the Twenty-first University Conference on Ceramic Science, University Park, PA, July 1985 (Materials Science and Research, Vol. 20), edited by R. E. TRESSLER, G. L. MESSING, C. G. PANTANO and R. E. NEWNHAM (Plenum, New York, 1986) p. 27.

    Google Scholar 

  15. R. K. BORDIA and R. RAJ, J. Amer. Ceram. Soc. 69 (1986) C-55.

    Article  Google Scholar 

  16. L. C. De JONGHE, M. N. RAHAMAN and C. H. HSUEH, Acta Metall. 34 (1986) 1467.

    Article  Google Scholar 

  17. M. N. RAHAMAN and L. C. De JONGHE, J. Amer. Ceram. Soc. 70 (1987) C-348.

    Article  Google Scholar 

  18. C. P. OSTERTAG, ibid. 70 (1987) C-355.

    Article  Google Scholar 

  19. R. K. BORDIA and R. RAJ, Adv. Ceram. Mater. 3 (1988) 122.

    Article  CAS  Google Scholar 

  20. M. W. WEISER and L. C. De JONGHE, J. Amer. Ceram. Soc. 71 (1988) C-125.

    Article  Google Scholar 

  21. R. K. BORDIA and R. RAJ, ibid. 71 (1988) 302.

    Article  CAS  Google Scholar 

  22. L. C. De JONGHE and M. N. RAHAMAN, in Proceedings of the Materials Research Society, San Diego, CA, April 1989, edited by I. A. AKSAY, G. L. MCVAY and D. R. ULRICH (Materials Research Society, Pittsburgh, PA, 1989) p. 353.

    Google Scholar 

  23. T. KIMURA, H. KAJIYAMA, J. KIM and T. YAMAGUCHI, J. Amer. Ceram. Soc. 72 (1989) 140.

    Article  CAS  Google Scholar 

  24. W. H. TUAN, E. GILBART and R. J. BROOK, J. Mater. Sci. 23 (1989) 1062.

    Article  Google Scholar 

  25. W. H. TUAN and R. J. BROOK, ibid. 24 (1989) 1953.

    Article  CAS  Google Scholar 

  26. F. F. LANGE, Acta Metall. 37 (1989) 697.

    Article  CAS  Google Scholar 

  27. M. N. RAHAMAN and L. C. De JONGHE, J. Amer. Ceram. Soc. 73 (1990) 602.

    Article  CAS  Google Scholar 

  28. L. C. STEARNS, M. P. HARMER and H. M. CHAN, ibid. 73 (1990) 2740.

    Article  CAS  Google Scholar 

  29. O. SUDRE and F. F. LANGE, ibid. 75 (1992) 519.

    Article  CAS  Google Scholar 

  30. C.-F. FAN and M. N. RAHAMAN, ibid. 75 (1992) 2056.

    Article  CAS  Google Scholar 

  31. Idem, ibid., ibid. 75 (1992) 2066.

    Article  Google Scholar 

  32. O. SUDRE and F. F. LANGE, C.-F. FAN and M. N. RAHAMAN, ibid. 75 (1992) 3241.

    Article  CAS  Google Scholar 

  33. J. KIM, T. KIMURA and T. YAMAGUCHI, J. Mater. Sci. 24 (1989) 213.

    Article  CAS  Google Scholar 

  34. T. SENDA and R. C. BRADT, J. Amer. Ceram. Soc. 74 (1991) 1296.

    Article  CAS  Google Scholar 

  35. C. GRESKOVICH and K. W. LAY, ibid. 55 (1972) 142.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Inamori Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimura, T., Kajiyama, H., Yazaki, R. et al. Effects of nondensifying inclusions on the densification and microstructure of zinc oxide matrix composites. JOURNAL OF MATERIALS SCIENCE 31, 4149–4157 (1996). https://doi.org/10.1007/BF00352681

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00352681

Keywords

Navigation