Skip to main content
Log in

Proliferative changes in glial cells during nerve regeneration

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

  1. 1.

    Glial cell proliferation has been studied with radioautographic technique using tritium-labelled thymidine in the hypoglossal nucleus of rabbits during the first six days after nerve crush.

  2. 2.

    Glial cells on the unoperated side show a slight, insignificant increase in number of labelled glial cells compared to control animals. In control hypoglossal nucleus, around one cell per 1000 glial cells is labelled.

  3. 3.

    During the 2nd to 4th day after nerve crush the glial cells in the regenerating nucleus show a tenfold increase in number of labelled glial cells compared to the unoperated side. This increase in glial cell labelling coincides with the outgrowth of new axons and the initial period of neuronal changes.

  4. 4.

    The dominating number of labelled nuclei are of microglial type with a tendency to pericapillary location.

  5. 5.

    Concomitant with the increased glial cell labelling, mitotic figures are seen in glial cells surrounding the regenerating neurons. The quotient glial labelling index: mitotic index is comparable to the same value in other proliferative processes outside the brain.

  6. 6.

    Increased numbers of labelled cells are seen in the capillary walls of the regenerating nucleus at the same time as the increased glial cell labelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian, E. K., and B. E. Walker: Incorporation of thymidine-H3 by cells in normal and injured mouse spinal cord. J. Neuropath, exp. Neurol. 21, 597–609 (1962).

    Google Scholar 

  • Allen, E.: The cessation of mitoses in central nervous system of the albino rat. J. comp. Neurol. 22, 547–568 (1912).

    Google Scholar 

  • Altman, J.: Autoradiographic investigation of cell proliferation in the brains of rats and cats. Anat. Rec. 145, 573–592 (1963).

    Google Scholar 

  • Andres, K. H.: Untersuchungen über morphologische Veränderungen in Spinalganglien während der retrograden Degeneration. Z. Zellforsch. 55, 49–79 (1961).

    Google Scholar 

  • Barron, K. D., and T. O. Tuncbay: Histochemistry of acid phosphatase and thiamine pyrophosphatase during axon reaction. Amer. J. Path. 40, 637–652 (1962).

    Google Scholar 

  • Bodian, D.: An electron-microscopic study of the monkey spinal cord. Bull. Johns Hopk. Hosp. 114, 13–119 (1964).

    Google Scholar 

  • Bonnier, G., and O. Tedin: Biologisk variationsanalys, 1st ed. Stockholm: Albert Bonnier 1940.

    Google Scholar 

  • Brattgård, S.-O., J. E. Edström, and H. Hydén: The chemical changes in regenerating neurons. J. Neurochem. 1, 316–325 (1957).

    Google Scholar 

  • —, H. Hydén, and J. Sjöstrand: Incorporation of orotic acid-14C and lysine-14 C in regenerating single nerve cells. Nature (Lond.) 182, 801–802 (1958).

    Google Scholar 

  • Bryans, W. A.: Mitotic activity in the brain of the adult rat. Anat. Rec. 133, 65–73 (1959).

    Google Scholar 

  • Bucher, O.: Die Amitose der tierischen und menschlichen Zelle. In: Protoplasmologia, vol. VI E 1. Wien: Springer 1959.

    Google Scholar 

  • Buchholz, A.: Über das Vorkommen von Karyokinesen in Zellen des Zentralnervensystems von neugeborenen und jungen Hunden und Kaninchen. Neurol. Zbl. 9, 140–142 (1890).

    Google Scholar 

  • Cammermeyer, J.: Astroglial changes during retrograde atrophy of Nucleus Facialis in mice. J. comp. Neurol. 102, 133–150 (1955).

    Google Scholar 

  • —: Differential response of two neuron types to facial nerve transection in young and old rabbits. J. Neuropath, exp. Neurol. 12, 594–616 (1963).

    Google Scholar 

  • Cervós-Navarro, J.: Elektronenmikroskopische Untersuchungen an retrograd veränderten Spinalganglien. Fortschr. Med. 80, 751–756 (1962).

    Google Scholar 

  • De Robertis, E., and H. M. Gerschenfeld: Submicroscopic morphology and function of glial cells. Int. Rev. Neurobiol. 3, 1–61 (1961).

    Google Scholar 

  • Fischer, J., and V. Malík: A histochemical study on the effect of transsection of the facialis nerve on the picture of glycerophosphate, lactate, succinate, malate and glutamate dehydrogenase in the cells of the facial nerve nucleus. Acta histochem. (Jena) 19, 369–376 (1964).

    Google Scholar 

  • Gehuchten, A. van: L'anatomie fine de la cellule nerveuse. Cellule 13, 313–390 (1897).

    Google Scholar 

  • Gersch, I., and D. Bodian: Some chemical mechanisms in chromatolysis. J. cell. comp. Physiol. 21, 253–279 (1943).

    Google Scholar 

  • Gracheva, N. D.: Autoradiographic determination with H3-labelled-thymidine of desoxyribonucleic acid synthesis in the cellular elements of the nervous system of white rats after total roentgen irradiation. Radiobiologija 3, 81–87 (1963).

    Google Scholar 

  • Greenfield, J. G., W. Blackwood, A. Meyer, W. H. McMenemey, and R. M. Norman: Neuropathologie. London: Edward Arnold Publ. 1958.

    Google Scholar 

  • Gutmann, B.: Evidence for the trophic function of the nerve cell in neuromuscular relations. In: The effect of use and disuse ou neuromuscular functions, p. 29–34, ed. by E. Gutmann and P. Hník. Prague: Publishing House of the Czechoslovak Academy of Sciences 1963.

    Google Scholar 

  • —, and P. Hník: The effect of use and disuse on neuromuscular functions. Prague: Publishing House of the Czechoslovak Academy of Sciences 1963.

    Google Scholar 

  • Härkönen, M.: Carboxylic esterases, oxidative enzymes and catecholamines in the superior cervical ganglion of the rat and the effect of preand postganglionic nerve division. Acta physiol. scand. 63, Suppl. 237 (1964).

    Google Scholar 

  • Hallén, O.: Quantitative analysis of sectioned biological material. J. Histochem. Cytochem. 10, 96–101 (1962).

    Google Scholar 

  • Hamilton, A.: Division of differentiated cells in central nervous system of white rat. J. comp. Neurol. 11, 297–320 (1901).

    Google Scholar 

  • Hansson, H.-A., and P. Sourander: Studies on cultures of mammalian retina Z. Zellforsch. 62, 26–47 (1964).

    Google Scholar 

  • Howe, H. A., and J. B. Flexner: Succinic dehydrogenase in regenerating neurons. J. biol. Chem. 167, 663–671 (1947).

    Google Scholar 

  • Hudson, G., A. Lazarow, and J. F. Hartmann: A quantitative electron microscopic study of mitochondria in motor neurones following axonal section. Exp. Cell Res. 24, 440–456 (1961).

    Google Scholar 

  • Hydén, H.: Protein metabolism in the nerve cell during growth and function. Acta physiol. scand. 6, Suppl. 17 (1943).

    Google Scholar 

  • —: Biochemical and functional interplay between neuron and glia. In: Recent advances in biological psychiatry, ed. by J. Wortis, vol. VI, p. 31–54. New York: Plenum Press 1964.

    Google Scholar 

  • Joseph, J.: Nuclear population changes in degenerating posterior columns of rabbits spinal cord. Acta anat. (Basel) 21, 356–365 (1954).

    Google Scholar 

  • Koburg, E., u. W. Maurer: Autoradiographische Untersuchung mit H3-Thymidin über die Dauer der Desoxyribonukleinsäure-Synthese und ihren zeitlichen Verlauf bei den Darmepithelientypen der Maus. Biochim. biophys. Acta (Amst.) 61, 229–242 (1962).

    Google Scholar 

  • Koenig, H., M. B. Bunge, and R. P. Bunge: Nucleic acid and protein metabolism in white matter. Arch. Neurol. (Chic.) 6, 177–193 (1962).

    Google Scholar 

  • Konigsmark, B. W., and R. L. Sidman: Origin of brain macrophages in the mouse. J. Neuropath. exp. Neurol. 22, 643–676 (1963).

    Google Scholar 

  • Kopriwa, B. M., and C. P. Leblowd: Improvements in the coating technique of radioautography. J. Histochem. Cytochem. 10, 269–284 (1962).

    Google Scholar 

  • Kreutzberg, G. W.: Changes of coenzyme (TPN) diaphorase and TPN-linked dehydrogenase during axonal reaction of the nerve cell. Nature (Lond.) 199, 393–394 (1963).

    Google Scholar 

  • Lamerton, L. F., and R. J. M. Fry: Cell proliferation. Oxford: Blackwell Sci. Publ. 1963.

    Google Scholar 

  • Lapham, L. W.: Cytologie and cytochemical studies of neuroglia. 1. A study of the problem of amitosis in reactive protoplasmic astrocytes. Amer. J. Path. 41, 1–21 (1962).

    Google Scholar 

  • Messier, B., and C. P. Leblond: Cell proliferation and migration as revealed by radioautography after injection of thymidine-H3 into male rats and mice. Amer. J. Anat. 106, 247–285 (1960).

    Google Scholar 

  • Miani, N.: Analysis of the somato-axonal movement of phospholipids in the vagus and hypoglossal nerves. J. Neurochem. 10, 859–874 (1963).

    Google Scholar 

  • Ramon Y, Cajal, S.: Degeneration and regeneration of the nervous system, ed. by R. M. May, vol. I. New York: Hafner Publ. 1959.

    Google Scholar 

  • Ramön-Moliner, E.: A study on neuroglia. J. comp. Neurol. 110, 157–171 (1958).

    Google Scholar 

  • Rhodes, A., D. Ford, and R. Rhines: Comparative uptake of DL-lysine-H3 by normal and regenerative hypoglossal nerve cells in euthyroid, hypothyroid and hyperthyroid male rats. Exp. Neurol. 10, 251–263 (1964).

    Google Scholar 

  • Schultze, B., and W. Oehlert: Autoradiographic investigation of incorporation of H3thymidine into cells of the rat and mouse. Science 181, 737–738 (1960).

    Google Scholar 

  • Schwarzacher, H. G.: Der Cholinesterasegehalt motorischer Nervenzellen während der axonalen Reaktion. Acta anat. (Basel) 32, 51–65 (1958).

    Google Scholar 

  • Sjöstrand, J.: DNA synthesis in glial cells during nerve regeneration. Experientia (Basel) 21, 142–143 (1965).

    Google Scholar 

  • Smart, I., and C. P. Leblond: Evidence for division and transformations of neuroglia cells in the mouse brain, as derived from radioautography after injection of thymidine-H3. J. comp. Neurol. 116, 349–367 (1961).

    Google Scholar 

  • Spielmeyer, W.: Histopathologie des Nervensystems, Bd I. Berlin: Springer 1922.

    Google Scholar 

  • Stohlman jr., F.: The kinetics of cellular proliferation. New York and London: Grune & Stratton 1959.

    Google Scholar 

  • Svaetichin, G., M. Laufer, G. Mitarai, R. Fatehchand, E. Vallbcalle, and J. Villegas: Glial control of neuronal networks and receptors. In: The visual system: Neurophysiology and Psychophysics. Symp. Freiburg 1961, S. 445–456.

  • Wolff, J.: Beiträge zur Ultrastruktur der Kapillaren in der normalen Großhirnrinde. Z. Zellforsch. 60, 409–431 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

I am indebted to Miss Margareta Eriksson and Miss Birgitta Hilding for skilful technical assistence and Dr. B. McEwen for valuable help in preparing the manuscript. The financial support of “Stiftelsen MS-fonden” is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sjöstrand, J. Proliferative changes in glial cells during nerve regeneration. Zeitschrift für Zellforschung 68, 481–493 (1965). https://doi.org/10.1007/BF00347712

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00347712

Keywords

Navigation