Skip to main content
Log in

Voluntary finger movement in man: Cerebral potentials and theory

Biological Cybernetics Aims and scope Submit manuscript

Abstract

Three different brain potentials preceeding voluntary rapid finger flexion can be recorded from the skull surface by time reversed averaging. The early cortical activity preceding unilateral movement is bilateral and widespread (Bereitschaftspotential, BP). The same applies for the second potential (pre-motion positivity, PMP). Only the third potential (motor potential, MP) is unilateral and restricted to the contralateral motor cortex. In a total of 87 experiments with 39 subjects, the BP started on the average 750 ms (SD 360, SE 38.5) prior to rapid finger flexion. Its largest amplitude was found mid-parietally and averaged-5.3 μV (SD 2.32, SE 0.4). Such amplitudes were found with averages of 800 and more movements per experiment. However, at the beginning of an experiment the BP is larger. Preceding finger movement, the BP was found bilaterally over the parietal and precentral cortex and over the midline. Over the frontal cortex, either no potential or positivity was recorded. In normal subjects, the BP always begins bilaterally and symmetrically. At parietal leads, it remains bilaterally-symmetrical. A slight contralateral preponderance begins about 400 ms prior to movement only over motor cortex, which becomes statistically significant at 150 ms. When comparing the parietal BP amplitude with the precentral amplitude on the ipsilateral side, where no superposition of the MP occurs, there is more negativity parietally than precentrally, although the parietal skull is about 11% thicker than the precentral. The BP is a negative shift of the cortical DC potential probably representing a preparatory process in the dendritic network of those cortical areas that are involved in the intended movement.

The PMP is the next potential occurring 90–80 ms (\(\bar x = {\text{87}}\), SD 34.2, SE 2.95) prior to the first action potential in the contracting muscle (EMG). It was found in 85% of our subjects. The PMP has at its maximum, mid-parietally, a mean amplitude of +1.7 μV (SD 1.6, SE 0.28). Like the BP, the PMP is bilateral and widespread in parietal and precentral leads of both sides and in the midline with a maximum at the anterior parietal region, despite the parietal skull being thicker than precentral. The short and the relatively constant onset time suggests that the PMP might reflect cortical activity (motor command) related to initiation of the tactually guided rapid finger movement under study.

The MP starting 60–50 ms (\(\bar x = {\text{54}}\), SD 19.4, SE 3.1) prior to first activity in the agonist EMG is the last potential to occur and is the only unilateral potential: its localisation is limited to the hand area of the motor cortex contralateral to the moving finger. In bipolar recordings, contralateral versus ipsilateral precentral or contralateral precentral versus vertex, it appears as a sharp additional negativity. This additional negativity averaged-1.3 μV (SD 0.64, SE 0.08). The MP reflects the motor cortical activity immediately preceding the movement.

After movement onset, a complex potential is recorded, that is also seen with passive finger movement, largely representing a somatosensory (proprioceptive) evoked response. The possible meaning of the movement-related potentials is discussed in relation to a theory of central motor function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Albe-Fessard, D., Donaldson, J.M.L.: Relation of movements induced by intracortical stimulation to receptive fields of points in the perirolandic and parietal cortex of the monkey. J. Physiol. (Lond.) 210, 57 (1970)

    Google Scholar 

  2. Allen, GI., Tsukahara, N.: Cerebrocerebellar communication systems. Physiol. Rev. 54, 957–1006 (1974)

    Google Scholar 

  3. Aschoff, J.C., Kornhuber, H.H.: Functional interpretation of somatic afferents in cerebellum, basal ganglia and motor cortex. In: Kornhuber, H.H. (Ed.): The somatosensory system. pp. 145–157. Stuttgart: G. Thieme 1975

    Google Scholar 

  4. Arduini, A.: Slow potential changes evoked by sensory and reticular stimulation, pp. 99–104. In: Sheer, D.E. (Ed.): Electrical stimulation of the brain. Houston: Univ. of Texas Press, 1961

    Google Scholar 

  5. Bard, P.: Studies in the cortical representation of somatic sensibility. Harvey Lect. 33, 143–169 (1938)

    Google Scholar 

  6. Bard, P.: Motor functions of the cerebral cortex and basal ganglia. In: Mountcastle, V.B. (Ed.) Medical Physiology, Vol. 2, pp. 1790–1810. St. Louis: C. V. Mosby Co. 1968

    Google Scholar 

  7. Bates, J.A.V.: Electrical activity of the cortex accompanying movements. J. Physiol. (Lond.) 113, 240–257 (1951)

    Google Scholar 

  8. Becker, W., Deecke, L., Grözinger, B., Kornhuber, H.H.: Weitere Untersuchungen über menschliche Hirnpotentiale vor Willkürbewegungen. Pflügers Arch. ges. Physiol. 312, 108–109 (1969)

    Google Scholar 

  9. Becker, W., Hoehne, O., Iwase, K., Kornhuber, H.H.: Bereitschaftspotential, prämotorische Positivierung und andere Hirnpotentiale bei sakkadischen Augenbewegungen. Vision Res. 12, 421–436 (1972)

    Google Scholar 

  10. Becker, W., Iwase, K., Jürgens, R., Kornhuber, H.H.: Brain potentials preceding slow and rapid hand movements. In: McCallum, W.C., Knott, J.R. (Eds.): The responsive brain pp. 99–102. Bristol: Wright & Son 1976

    Google Scholar 

  11. Borda, R.P.: The effect of altered drive states on the contingent negative variation (CNV) in Rhesus monkeys. Electroenceph. clin. Neurophysiol. 29, 173–180 (1970)

    Google Scholar 

  12. Burchfiel, J.C., Duffy, F.H.: Muscle afferent input to single cells in primate somatosensory cortex. Brain Res. 45, 241–246 (1972)

    Google Scholar 

  13. Bureš, J.: Ontogenetic development of steady potential differences in cerebral cortex in animals. Electroenceph. clin. Neurophysiol. 9, 121–130 (1975)

    Google Scholar 

  14. Burian, K., Gestring, G.F., Haider, M.: EEG-Computer-Analyse sinnloser und sinnvoller akustischer Reize. Acta otolaryng. (Stockh.) 67, 333–340 (1969)

    Google Scholar 

  15. Butler, S.R., Glass, A.: Inter-hemispheric asymmetry of contingent negative variation during numeric operations. Electroenceph. clin. Neurophysiol. 30, 366P (1971)

  16. Caspers, H.: Changes of cortical D.C. potentials in the sleep-wakefulness cycle. In: Wolstenholme, G.E.W., O'Connor, M. (Eds.): Ciba Foundation Symp. on the nature of sleep, pp. 237–259. Boston: Little, Brown & Co. 1961

    Google Scholar 

  17. Caspers, H., Speckmann, E.-J.: Cerebral pO2 and pH: Changes during convulsive activity and their significance for spontaneous arrest of seizures. Epilepsia 13, 699–725 (1972)

    Google Scholar 

  18. Caspers, H., Speckmann, E.-J.: DC-potentials of the cerebral cortex. Rev. Physiol. Biochem. Pharmacol. (in press)

  19. Castellucci, V.F., Goldring, S.: Contribution to steady potential shifts of slow depolarization in cells presumed to be glia. Electroenceph. clin. Neurophysiol. 28, 109–118 (1970)

    Google Scholar 

  20. Cooper, I.S.: Effect of chronic stimulation of anterior cerebellum on neurological disease. Lancet 1973I, 206

  21. Deecke, L., Becker, W., Grözinger, B., Scheid, P., Kornhuber, H.H.: Human brain potentials preceding voluntary limb movements. Electroenceph. clin. Neurophysiol. 33, (Suppl.) 87–94 (1973)

    Google Scholar 

  22. Deecke, L., Englitz, H.G., Kornhuber, H.H., Schmitt, G.: Cerebral potentials preceding voluntary movement in parkinsonism. Proc. Int. Symp. on Cerebral Evoked Potentials in Man Brussels (1974) (in press)

  23. Deecke, L., Goode, R.C., Whitehead, G.: Effect of altered respiration on the human auditory evoked response. Proc. Int. Symp. on Cerebral Evoked Potentials in Man Brussels (1974) (in press)

  24. Deecke, L., Grözinger, B., Kornhuber, H.H.: BP, PMP, and MP in right- and left-handed subjects (in preparation)

  25. Deecke, L., Scheid, P., Kornhuber, H.H.: Distribution of readiness potential, pre-motion positivity, and motor potential of the human cerebral cortex preceding volumtary finger movements. Exp. Brain Res. 8, 158–168 (1969)

    Google Scholar 

  26. Deecke, L., Scheid, P., Kornhuber, H.H.: Cortical potentials during passive finger-movements (in preparation)

  27. Deecke, L., Schwarz, D.W.F., Fredrickson, J.M.: Projection of group I muscle afferents to the postcentral gyrus of the Rhesus monkey: Pflügers Arch. ges. Physiol. 332, Suppl. 86 (1972)

  28. Delong, M.: Motor functions of the basal ganglia: single-unit activity during movement. In: Schmitt, F.O., Worden, F.G. (Eds.): The Neurosciences. III. Study Program Cambridge, pp. 319–325. London: MIT-Press 1974

    Google Scholar 

  29. Denny-Brown, D.: The general principles of motor integration. In: Field, J. et al. (Eds.). Handbook of Physiology, Section I, Neurophysiology, pp. 781–796. Washington: Amer. Physiol. Soc. 1900

    Google Scholar 

  30. Donchin, E., Otto, D., Gerbrandt, L.K., Pribram, K.H.: While a monkey waits: Electrocortical events recorded during the foreperiod of a reaction time study. Electroenceph. clin. Neurophysiol. 31, 115–127 (1971)

    Google Scholar 

  31. Dondey, M., Snider, R.S.: Slow potential shifts following cerebellar stimulation. Electroenceph. clin. Neurophysiol. 7, 264–272 (1955)

    Google Scholar 

  32. Dow, R.S.: Cerebellar action potentials in response to stimulation of the cerebral cortex in monkeys and cats. J. Neurophysiol. 5, 121–136 (1942)

    Google Scholar 

  33. Duffy, F.H., Burchfiel, J.L.: Somatosensory system: Organizational hierarchy from single units in monkeys area 5. Science 172, 273–275 (1971)

    Google Scholar 

  34. von Euler, C., Green, J.C., Ricci, G.: The role of hippocampal dendrites in evoked responses and after-discharges. Acta physiol. scand. 42, 87–111 (1957)

    Google Scholar 

  35. Evarts, E.V.: Activity of ventralis lateralis neurons prior to movement in the monkey. Physiologist 13, 191 (1970)

    Google Scholar 

  36. Fleming, J.F.R., Crosby, E.C.: The parietal lobe as an additional motor area. The motor effects of electrical stimulation and ablation of cortical areas 5 and 7 in monkeys. J. comp. Neurol. 103, 485–512 (1955)

    Google Scholar 

  37. Foerster, O.: Motorische Felder und Bahnen. In: Bumke, O., Foerster, O. (Eds.): Handbuch der Neurologie, VI. Berlin: Springer (1936)

    Google Scholar 

  38. Fredrickson, J.M., Kornhuber, H.H., Schwarz, D.W.F.: Cortical projections of the vestibular nerve. In: Kornhuber, H.H. (Ed.): Handbook of sensory physiology Vol. VI/1, pp. 565–582. Berlin-Heidelberg-New York: Springer 1974

    Google Scholar 

  39. Gazzaniga, M.S., Hillyard, S.A.: Attention mechanisms following brain bisection. In: Kornblum, S. (Ed.): Attention and performance, IV, pp. 221–238. New York-London: Academic Press 1973

    Google Scholar 

  40. Gerbrandt, L.K., Goff, W.R., Smith, D.B.: Distribution of the human average movement potential. Electroenceph. clin. Neurophysiol. 34, 461–474 (1973)

    Google Scholar 

  41. Gilden, L., Vaughan, jr. H.G., Costa, L.D.: Summated human EEG potentials with voluntary movement. Electroenceph. clin. Neurophysiol. 20, 433–438 (1966)

    Google Scholar 

  42. Goldring, S., O'Leary, J.L.: Cortical D.C. changes incident to midline thalamic stimulation. Electroenceph. clin. Neurophysiol. 9, 577–584 (1957)

    Google Scholar 

  43. Grinker, R.R.: Elektrische Reizung der Basalganglien bei einem Falle von anenkephalie. Z. ges. Neurol. Psychiat. 135, 573–577 (1931)

    Google Scholar 

  44. Grözinger, B., Kornhuber, H.H., Kriebel, J.: Methodological problems in the investigation of cerebral potentials preceding speech: determining the onset and suppressing artefacts cuased by speech. Neurophysiologia 13, 263–270 (1975)

    Google Scholar 

  45. Grözinger, B., Kriebel, J., Kornhuber, H.H.: Respiration correlated brain potentials. J. Interdiscipl. Cycle Res. 5, 287–294 (1974)

    Google Scholar 

  46. Grözinger, B., Kornhuber, H.H., Kriebel, J.: Human cerebral potentials preceding speech production, phonation, and movements, of the mouth and tongue with reference to respiration and extracerebral potentials Proc. Int. Symp. on cerebral evoked potentials in man. Brussels (1974) (in press)

  47. Hagbarth, K.E., Vallbo, A.B.: Single unit recordings from muscle nerves in human subjects. Acta physiol. scand. 76, 321–334 (1969)

    Google Scholar 

  48. Haider, M., Ganglberger, J.A., Groll-Knapp, E.: Computer analyzed thalamic potentials and their relation to expectancy waves in man. Acta Neurol. Latinoamer. 14, 132–137 (1968)

    Google Scholar 

  49. Hassler, R.: Erkrankungen des Kleinhirns. In: v. Bergmann, G. et al.: (Eds.): Handbuch der Inneren Medizin, Vol. V/3, pp. 620–675. Berlin-Göttingen-Heidelberg-New York: Springer (1953)

    Google Scholar 

  50. Hécaen, H., Ajuriaguerra, J.: Left-handedness, manual superiority and cerebral dominance. New York: Grune & Stratton 1964

    Google Scholar 

  51. Hillyard, S.A., Galambos, R.: Eye movement artifact in the CNV. Electroenceph. clin. Neurophysiol. 28, 173–182 (1970)

    Google Scholar 

  52. Holst, E. von, Mittelstaedt, H.: Das Reafferenzprinzip. (Wechselwirkungen zwischen Zentralnervensystem und Peripherie). Naturwissenschaften 37, 464–475 (1950)

    Google Scholar 

  53. Hyvärinen, J., Poranen, A.: Function of the parietal associative area 7 as revealed from cellular discharges in alert monkeys. Brain 97, 673–692 (1974)

    Google Scholar 

  54. Irwin, D.A., Knott, J.R., McAdam, D.W., Rebert, C.S.: Motivational determinants of the “contingent negative variation”. Electroenceph. clin. Neurophysiol. 21, 538–543 (1966)

    Google Scholar 

  55. Iwata, K., Snider, R.S.: Cerebello-hippocampal influence on the electroencephalogram. Electroenceph. clin. Neurophysiol. 11, 439–446 (1959)

    Google Scholar 

  56. Järvilehto, T., Fruhstorfer, H.: Differentiation between slow cortical potentials associated with motor and mental acts in man. Exp. Brain. Res. 11, 309–317 (1970)

    Google Scholar 

  57. Jasper, H.H.: The ten-twenty-electrode system of the International Federation. Electroenceph. clin. Neurophysiol. 10, 371–375 (1958)

    Google Scholar 

  58. Jasper, H.H., Bertrand, G.: Thalamic units involved in somatic sensation and voluntary and involuntary movements in man. In: Purpura, D., Yahr, M. (Eds.): The Thalamus, pp. 365–390. New York-London: Columbia University Press 1966

    Google Scholar 

  59. Jones, E.G., Powell, T.P.S.: An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93, 793–820 (1970)

    Google Scholar 

  60. Karahashi, Y., Goldring, S.: Intracellular potentials from “idle cells in cerebral cortex of cat. Electroenceph. clin. Neurophysiol. 20, 600–607 (1966)

    Google Scholar 

  61. Kemp, J.M., Powell, T.P.S.: The connections of the striatum and globus pallidus: synthesis and speculatfon. Phil. Trans. roy. Soc. B. 262, 441–457 (1971)

    Google Scholar 

  62. Kornhuber, H.H.: Motor function of cerebellum and basal ganglia: The cerebello-cortical saccadic (ballistic) clock, the cerebello-nuclear hold regulator and the basal ganglia ramp (voluntary speed smooth movement) generator. Kybernetik 8, 157–162 (1971)

    Google Scholar 

  63. Kornhuber, H.H.: Cerebral cortex. cerebellum and basal ganglia: An introduction to their motor functions. In: Schmitt, F.O. (Ed.): The neurosciences, III, pp. 267–280 III. Study Program. Cambridge-London: MIT Press 1974

    Google Scholar 

  64. Kornhuber, H.H.: The vestibular system and the general motor system. In: Kornhuber, H.H. (Ed.): Handbook of Sensory physiology. Vol. VI/2, Vestibular System, pp. 581–620. Berlin-Heidelberg-New York: Springer 1974

    Google Scholar 

  65. Kornhuber, H.H.: Neural control of input into long term memory: Limbic system and amnestic syndrome in man. In: Zippel, H.P. (Ed.): Memory and transfer of information. pp. 1–22. New York: Plenum Publ. Comp. 1973

    Google Scholar 

  66. Kornhuber, H.H., Aschoff, J.C.: Somatisch-vestibuläre Integration an Neuronen des motorischen Cortex. Naturwissen-schaften 51, 62–63 (1964)

    Google Scholar 

  67. Kornhuber, H.H., Deecke, L.: Hirnpotentialänderungen beim Menschen vor und nach Willkürbewegungen, dargestellt mit Magnetbandspeicherung und Rückwärtsanalyse. Pflügers Arch. ges. Physiol. 281, 52 (1964)

    Google Scholar 

  68. Kornhuber, H.H., Deecke, L.: Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pflügers Arch. ges. Physiol. 248, 1–17 (1965)

    Google Scholar 

  69. Kornhuber, H.H., Fredrickson, J.M., Figge, U.: Die cortikale Projektion der vestibulären Afferenz beim Rhesusaffen. Pflügers Arch. ges. Physiol. 283, 20 (1965)

    Google Scholar 

  70. Kutas, M., Donchin, E.: Studies of squcezing: handedness, responding hand, response force, and asymmetry of readiness potential. Science 186, 545–548 (1974)

    Google Scholar 

  71. Landau, W.M., Clare, M.H., Bishop, G.H.: Effects of polarizing currents on certain evoked potentials in cerebral cortex. Trans. Amer. neurol. Ass. 87, 72–75 (1962)

    Google Scholar 

  72. Leissner, P., Lindholm, L.-E., Petersen, I.: Alpha amplitude dependence on skull thickness as measured by ultrasound technique. Electroenceph. clin. Neurophysiol. 29, 392–399 (1970)

    Google Scholar 

  73. Lilly, J.C.: Correlations between neurophysiological activity in the cortex and short-term behavior in the monkey. In: Harlow, H.F., Woolsey, C.N. (Eds.): Biological and biochemical bases of behavior. Madison: University of Wisconsin Press 1958

    Google Scholar 

  74. Low, M.D., Borda, R.P., Frost, J.D., Kellaway, P.: Surfacenegative, slow potential shift associated with conditioning in man. Neurology 16, 771–782 (1966)

    Google Scholar 

  75. Low, M.D., Wada, J.A., Fox, M.: Electroencephalographic localization of conative aspects of language production in the human brain. In: McCallum, W.C., Knott, J.R. (Eds.): The responsive brain, pp. 165–168. Bristol: J. Wright & Son 1976

    Google Scholar 

  76. Marsh, G.R., Poon, L.W., Thompson, L.W.: Some relation-ships between CNV, P 300, and task demands. In: McCallum, W.C., Knott, J.R. (Eds.): The responsive brain, pp. 122–125, Bristol. J. Wright & Son 1976

    Google Scholar 

  77. McAdam, D.W.: Slow potential changes recorded from human brain during learning of a temporal interval. Psychon. Sci. 6, 435–436 (1966)

    Google Scholar 

  78. McAdam, D.W., Seales, D.M.: Bereitschaftspotential enhancement with increased level of motivation. Electroenceph. clin. Neurophysiol. 27, 73–75 (1969)

    Google Scholar 

  79. McCallum, W.C., Papakostopoulos, D., Griffith, H.B.: Distribution of CNV and other slow potential changes in human brain stem structures. In: McCallum, W.C., Knott, J.R. (Eds.): The responsive brain, pp. 205–210. Bristol: J. Wright & Son 1976

    Google Scholar 

  80. McCallum, W.C.: personal communication (1973)

  81. Mettler, F.A., Mettler, C.C., Culler, E.: Effects of total removal of the cerebral cortex. Arch. Neurol. Psychiat. 34, 1238–1249 (1935)

    Google Scholar 

  82. Mettler, F.A.: Effects of bilateral simultaneous subcortical lesions in the primate. J. Neuropathol. exp. Neurol. 4, 99–122 (1945)

    Google Scholar 

  83. Moruzzi, G., Magoun, H.W.: Brain stem reticular formation and activation of the EEG. Electroenceph. clin. Neurophysiol. 1, 455–473 (1948)

    Google Scholar 

  84. Mountcastle, V.B., Lynch, J.C., Georgopoulos, A., Sakata, H., Acuna, C.: Posterior parietal association cortex of the monkey: Command functions for operations within extrapersonal space. J. Neurophysiol. 38, 871–908 (1975)

    Google Scholar 

  85. Nyby, O., Jansen, J.: An experimental investigation of the cortico-pontine projection in Macaca mulatta. Norske Vid. Akad. SKRI. Math. Naturw., Kl.3. pp. 47. Oslo: Jacob Dybwad (1951)

    Google Scholar 

  86. O'Leary, J.L., Goldring, S.: D-C potentials of the brain. Physiol. Rev. 44, 91–125 (1964)

    Google Scholar 

  87. Oscarsson, O., Rosén, I.: Projection to cerebral cortex of large muscle spindle afferents in forelimb nerves of the cat. J. Physiol. (Lond.) 169, 924–945 (1963)

    Google Scholar 

  88. Pandya, D., Kuypers, H.C.J.M.: Cortico-cortical connections in the Rhesus monkey. Brain Res. 13, 13–36 (1969)

    Google Scholar 

  89. Papakostopoulos, D., Cooper, R., Crow, H.J.: Cortical potentials evoked by finger displacement in man. Nature 252, 582–584 (1974)

    Google Scholar 

  90. Penfield, W., Jasper, H.: Epilepsy and the functional anatomy of the human brain. Boston: Little Brown & Co. 1954

    Google Scholar 

  91. Penfield, W., Rasmussen, T.: The cerebral cortex of man. New York: Macmillan 1950

    Google Scholar 

  92. Phillips, C.G., Powell, T.P.S., Wiesendanger, M.: Projection from low-threshold muscle afferents of hand and forearm to area 3a of baboon's cortex. J. Physiol. (Lond.) 217, 419–446 (1971)

    Google Scholar 

  93. Ransom, B.R., Goldring, S.: Ionic determinants of membrane potential of cells presumed to be glia in cerebral cortex of cat. J. Neurophysiol. 36, 855–868 (1973)

    Google Scholar 

  94. Ransom, B.R., Goldring, S.: Slow depolarization in cells presumed to be glia in cerebral cortex of cat. J. Neurophysiol. 36, 869–878 (1973)

    Google Scholar 

  95. Rebert, C.S.: Cortical and subcortical slow potentials in the monkey's brain during a preparatory interval. Electroenceph. clin. Neurophysiol. 33, 389–402 (1972)

    Google Scholar 

  96. Sakata, H., Takaoka, Y., Kawarasaki, A., Shibutani, H.: Somatosensory properties of neurons in the superior parietal cortex (area 5) of the Rhesus monkey. Brain Res. 64, 85–102 (1973)

    Google Scholar 

  97. Schlag, J., Villiblanca, J.: Cortical incremental responses to thalamic stimulation. Brain Res. 6, 119–142 (1967)

    Google Scholar 

  98. Schulze, H., Caspers, H.: Die physiologischen Schwankungen der corticalen Gleichspannung und ihre Beziehungen zur Reticularisaktivität. Pflügers Arch. ges. Physiol. 247, 55 (1961)

    Google Scholar 

  99. Schwarz, D.W.F., Deecke, L., Fredrickson, J.M.: Cortical projection of group I muscle afferents to areas 2, 3a, and the vestibular field in the Rhesus monkey. Exp. Brain Res. 17, 516–526 (1973)

    Google Scholar 

  100. Shvets, T.B.: Conference on electrophysiology of higher nervous activity. Abstracts, Moscow 1958, p. 138, cited by Rusinov, V.S. General and localized alterations in the electroencephalogram during the formation of conditioned reflexes in man. Electroenceph. clin. Neurophysiol. 13 (Suppl.) 309–319 (1960)

  101. Skinner, J.E., Lindsley, D.B.: The nonspecific mediothalamicfronto-cortical system: Its influence on electrocortical activity and behavior. In: Pribram, K.H. (Ed.): Psychophysiology of the frontal lobes, pp. 185–234. New York-London: Academic Press 1973

    Google Scholar 

  102. Tanji, J., Kato, M.: Discharges of single motor units at voluntary contraction of abductor digiti minimi muscle in man. Brain Res. 45, 590–593 (1972)

    Google Scholar 

  103. Thach, W.T.: Discharge of cerebellar neurons related to two maintained postures and two prompt movements I. Nuclear cell output. J. Neurophysiol. 33, 527–536 (1970)

    Google Scholar 

  104. Thach, W.T.: Timing of activity in cerebellar dentate nucleus and cerebral motor cortex during prompt volitional movement. Brain Res. 88, 233–241 (1975)

    Google Scholar 

  105. Timsit, M.: The Kornhuber and Deecke phenomenon in schizophrenics and borderline cases. Electroenceph. clin. Neurophysiol. 29, 535P (1970)

  106. Vaughan, Jr. H.G., Costa, L.D., Ritter, W.: Topography of the human motor potential. Electroenceph. clin. Neurophysiol. 25, 1–10 (1968)

    Google Scholar 

  107. Vaughan, Jr. H.G., Gross, E.G., Bossom, J.: Cortical motor potential in monkey before and after upper limb deafferentation. Exp. Neurol. 26, 253–262 (1970)

    Google Scholar 

  108. Vogt, C., Vogt, O.: Die vergleichend-architektonische und die vergleichend-reizphysiologische Felderung der Großhirnrinde unter besonderer Berücksichtigung der menschlichen. Naturwissenschaften 14, 1190–1194 (1926)

    Google Scholar 

  109. Wagman, J.H.: Eye movements induced by electric stimulation of cerebrum in monkeys and their relationship to bodily movements. In: Bender, M.B. (Ed.): The oculomotor system. New York: Hoeber 1964

    Google Scholar 

  110. Walter, W.G., Cooper, R., Aldridge, V.J., McCallum, W.D., Winter, A.L.: Contingent negative variation: an electric sign of sensorimotor association and expectancy in the human brain. Nature (Lond.) 203, 380–384 (1964)

    Google Scholar 

  111. Walter, W.G.: Electrophysiologic contributions to psychiatric therapy. Curr. Psychiat. Their. 6, 13–25 (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft

“Habilitationsschrift” of L.D. submitted to the Faculty of Clinical Medicine, University of Ulm (1974)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deecke, L., Grözinger, B. & Kornhuber, H.H. Voluntary finger movement in man: Cerebral potentials and theory. Biol. Cybernetics 23, 99–119 (1976). https://doi.org/10.1007/BF00336013

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00336013

Keywords

Navigation