Skip to main content
Log in

Transformation experiments with two chiral endosulfan metabolites by soil microorganisms — CHIRAL HRGC on lipophilic cyclodextrin derivatives

  • Original Papers
  • Environmental Analysis
  • Published:
Fresenius' Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Two chiral metabolites of the hexachlorinated cyclodien insecticide endosulfan, C9H6Cl6O3S, the endosulfan hydroxyether and the endosulfan lactone, were separated into their enantiomers using lipophilic β-cyclodextrin derivatives in chiral high-resolution gas chromatography (CHRGC). We separated the hydroxyether on heptakis-(2,3,6-tri-O-pentyl)-β-cyclodextrin (LIPODEX-C) and the endosulfan lactone on heptakis-(3-O-acetyl-2,6-di-O-pentyl)-β-cyclodextrin (LIPODEX-D). We also investigated the enantioselective formation and transformation of these two metabolites by soil organisms. To approximate real world conditions of microbiological transformation, incubation experiments with mixed cultures of soil microorganisms were carried out. Significant differences were observed in the transformation experiments under aerobic and anaerobic conditions. The endosulfan hydroxyether (ESH) is not formed enantioselectively from prochiral endosulfan diol (ESD) in the aerobic transformation pathway. The hydroxyether itself is enantioselectively converted to the endosulfan lactone (ESL) as a major pathway only under aerobic conditions. Corresponding enantiomers of endosulfan hydroxyether and endosulfan lactone with the same absolute configuration could be assigned. The lactone enantiomers are stereoselectively formed via the hydroxyether as a minor pathway under anaerobic conditions. While the first eluting lactone enantiomer was more abundant in the aerobic experiment, it was the second eluting under anaerobic conditions. Four major so far unidentified metabolites were detected in the anaerobic incubations of both the endosulfan hydroxyether and the endosulfan diol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cotham EW, Bidleman TF (1989) J Agric Food Chem 37:824–828

    Google Scholar 

  2. Goebel H, Gorbach S, Knauf W, Rimpau RH, Hüttenbach H (1982) Res Rev 83:136–137

    Google Scholar 

  3. Worthing R, Hance RJ (1991) The pesticide manual — A world compendium, 9th edn. British Crop Protection Council, Farnham, pp 332–333

    Google Scholar 

  4. El Zorgani GA, Omer MEH (1974) Bull Env Contam Toxicol 12:182–185

    Google Scholar 

  5. World Health Organisation (1984) Endosulfan. Environmental Health Criteria, Geneva

    Google Scholar 

  6. Domsch KH (1992) Pestizide im Boden — Mikrobieller Abbau und Nebenwirkungen auf Mikroorganismen. VCH, Weinheim, pp 128–129

    Google Scholar 

  7. Burgoyne TW, Hites RA (1993) Environ Sci Technol 279:910–914

    Google Scholar 

  8. Cürten B (1994) Diploma Thesis, University of Ulm

  9. Schreitmüller J (1994) Dissertation, University of Ulm

  10. Buchert H, Class T, Ballschmiter K (1989) Fresenius Z Anal Chem 333:211–217

    Google Scholar 

  11. Perscheid M, Schlüter H, Ballschmiter K (1973) Z Naturforsch 28c:761–763

    Google Scholar 

  12. Maier-Bode H (1968) Res Rev 22:17–23

    Google Scholar 

  13. Ballschmiter K, Tölg G (1966) Angew Chemie 78:775–776

    Google Scholar 

  14. Schuphan I, Ballschmiter K (1968) Z Naturforsch 23B:701–706

    Google Scholar 

  15. Martens R (1977) Bull Environ Contam Toxicol 17:438–446

    Google Scholar 

  16. Schuphan I, Ballschmiter K (1972) Nature 237:100–101

    Google Scholar 

  17. Schuphan I, Ballschmiter K (1972) Z Pflanzenkrank Pflanzenschutz 79:23–26

    Google Scholar 

  18. Rückert W, Ballschmiter K (1972) Fresenius Z Anal Chemie 259:188–190

    Google Scholar 

  19. König WA, Icheln D, Runge T, Pfaffenberger B, Ludwig P, Hühnerfuss H (1991) JHRC 14:530–535

    Google Scholar 

  20. König WA (1989) Nachr Chem Tech Lab 37:471–476

    Google Scholar 

  21. Schurig V, Nowotny H (1990) Angew Chem 102:969–1108

    Google Scholar 

  22. Mössner S, Spraker TR, Becker P, Ballschmiter K (1992) Chemosphere 24:1171–1180

    Google Scholar 

  23. Müller MD, Schalbach M, Oehme M (1992) Environ Sci Technol 26:566–569

    Google Scholar 

  24. Faller J, Hühnerfuss H, König WA, Krebber R, Ludwig P (1991) Environ Sci Technol 25:676–678

    Google Scholar 

  25. Buser H, Müller MD (1992) Environ Sci Technol 26:1533–1540

    Google Scholar 

  26. Buser H, Müller MD (1992) Anal Chem 64:3168–3175

    Google Scholar 

  27. Schneider M (1993) Diploma Thesis, University of Ulm

  28. Feichtinger H, Linden HW (1967) Chem Ber 100:855–862

    Google Scholar 

  29. Miles JRW, Moy P (1979) Bull Environ Contam Toxicol 23:13–19

    Google Scholar 

  30. Izumi Y, Tai A (1977) Stereodifferentiating reactions. Kodansha Scientific Books, Tokyo

    Google Scholar 

  31. Rückert W, Ballschmiter K (1973) Z Naturforsch 28c:107–112

    Google Scholar 

  32. Schuphan I, Ballschmiter K (1972) Fresenius Z Anal Chem 259:25–28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Dr. Dr. h.c. mult. J. F. K. Huber on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, M., Ballschmiter, K. Transformation experiments with two chiral endosulfan metabolites by soil microorganisms — CHIRAL HRGC on lipophilic cyclodextrin derivatives. Fresenius J Anal Chem 352, 756–762 (1995). https://doi.org/10.1007/BF00323060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00323060

Keywords

Navigation