Skip to main content
Log in

Absence of rapid terpene turnover in several diverse species of terpene-accumulating plants

  • Original Papers
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Terpenes are commonly believed to undergo rapid metabolic turnover in plants, but the evidence for this process comes largely from studies that used detached organs or applied radiolabeled precursors in unnatural ways. When 14CO2 pulse labeling experiments were carried out with intact plants of four taxonomically distant, terpene-accumulating species, no significant turnover of monoterpenes, sesquiterpenes or diterpenes was detected in young foliage over a two week period after exposure to 14CO2. These results are consistent with those of other investigations performed under physiologically realistic conditions, and caution against the uncritical incorporation of turnover into models or theories concerning plant chemical defense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams RP (1979) Diurnal variation in the terpenoids of Juniperus scopulorum (Cupressaceae)- summer versus winter. Am J Bot 66:986–988

    Google Scholar 

  • Adams RP, Hagerman A (1977) Diurnal variation in the volatile terpenoids of Juniperus scopulorum (Cupressaceae). Am J Bot 64:278–285

    Google Scholar 

  • Adewusi SRA (1990) Turnover of dhurrin in green sorghum seedlings. Plant Physiol 94:1219–1224

    Google Scholar 

  • Adzet T, Ponz R, Wolf E, Schulte E (1992) Content and composition of Melissa officinalis oil in relation to leaf position and harvest time. Planta Med 58:562–564

    Google Scholar 

  • Anderson AB, Riffer R, Wong A (1969) Monoterpenes, fatty and resin acids of Pinus contorta and Pinus attenuata. Phytochemistry 8:2401–2403

    Google Scholar 

  • Banthorpe DV, Ekundayo O (1976) Biosynthesis of (+)-car-3-ene in Pinus species. Phytochemistry 15:109–112

    Google Scholar 

  • Barz W, Koster J (1981) Turnover and degradation of secondary (natural) products. In: Conn EE (eds) The biochemistry of plants: A comprehensive treatise. Vol 7. Secondary plant products. Academic Press, New York, pp 35–84

    Google Scholar 

  • Bjorkman C, Larsson S, Gref R (1991) Effects of nitrogen fertilization on pine needle chemistry and sawfly performance. Oecologia 86:202–209

    Google Scholar 

  • Black TH (1983) The preparation and reactions of diazomethane. Aldrichimica Acta 16:3–10

    Google Scholar 

  • Breccia A, Badiello R (1967) The role of general metabolites in the biosynthesis of natural products. I. The terpene marrubiin. Z Naturforsch 22b:44–49

    Google Scholar 

  • Brophy JJ, Davies NW, Southwell IA, Stiff IA, Williams LR (1989) Gas chromatographic quality control for oil of Melaleuca terpinen-4-ol type (Australian tea tree). J Agr Food Chem 37:1330–1335

    Google Scholar 

  • Bryant JP, Chapin FS III, Klein DR (1983) Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–368

    Google Scholar 

  • Burbott AJ, Loomis WD (1969) Evidence for metabolic turnover of monoterpenes in peppermint. Plant Physiol 44:173–179

    Google Scholar 

  • Coley PD, Bryant JP, Chapin FS III (1985) Resource availability and plant antiherbivore defense. Science 230:895–899

    Google Scholar 

  • Croteau R, Gundy A (1984) Cyclization of farnesyl pyrophosphate to the sesquiterpene olefins humulene and caryophyllene by an enzyme system from sage (Salvia officinalis). Arch Biochem Biophys 233:838–841

    Google Scholar 

  • Croteau R, Karp F (1976) Biosynthesis of monoterpenes: Enzymatic conversion of neryl pyrophosphate to 1,8-cineole, α-terpineol and cyclic monoterpene hydrocarbons by a cell-free preparation from sage (Salvia officinalis). Arch Biochem Biophys 176:734–746

    Google Scholar 

  • Croteau R, Loomis WD (1972) Biosynthesis of mono- and sesquiterpenes in peppermint from mevalonate-2-14C. Phytochemistry 11:1055–1066

    Google Scholar 

  • Croteau R, Loomis WD (1973) Biosynthesis of squalene and other triterpenes in Mentha piperita from mevalonate-2-14C. Phytochemistry 12:1957–1965

    Google Scholar 

  • Croteau R, Sood VK (1985) Metabolism of monoterpenes: Evidence for the function of monoterpene catabolism in peppermint (Mentha piperita) rhizomes. Plant Physiol 77:801–806

    Google Scholar 

  • Croteau R, Burbott AJ, Loomis WD (1972) Biosynthesis of monoand sesqui-terpenes in peppermint from glucose-14C and 14CO2. Phytochemistry 11:2459–2467

    Google Scholar 

  • Croteau R, El-Bialy H, El-Hindawi S (1984a) Metabolism of monoterpenes: Lactonization of (+)-camphor and conversion of the corresponding hydroxy acid to the glucoside-glucose ester in sage (Salvia officinalis). Arch Biochem Biophys 228:667–680

    Google Scholar 

  • Croteau R, Sood VK, Renstrom B, Bhushan R (1984b) Metabolism of monoterpenes: Early steps in the metabolism of d-neomenthyl-β-D-glucoside in peppermint (Mentha piperita) rhizomes. Plant Physiol 76:647–653

    Google Scholar 

  • Croteau R, El-Bialy H, Dehal SS (1987) Metabolism of monoterpenes: Metabolic fate of (+)-camphor in sage (Salvia officinalis). Plant Physiol 84:649–653

    Google Scholar 

  • Daddona PE, Wright JL, Hutchinson CR (1976) Alkaloid catabolism and mobilization in Catharanthus roseus. Phytochemistry 15:941–945

    Google Scholar 

  • Dement WA, Tyson BJ, Mooney HA (1975) Mechanism of monoterpene volatilization in Salvia mellifera. Phytochemistry 14:2555–2557

    Google Scholar 

  • De Pooter HL, Vermeesch J, Schamp NM (1989) The essential oils of Tanacetum vulgare L. and Tanacetum parthenium (L.) Schultz-Bip. J Ess Oil Res 1:9–13

    Google Scholar 

  • Dustin CD, Cooper-Driver GA (1992) Changes in phenolic production in the hay-scented fern (Dennstaedtia punctilobula) in relation to resource availability. Biochem Syst Ecol 20:99–106

    Google Scholar 

  • Fagerstrom T (1989) Anti-herbivory chemical defense in plants: A note on the concept of cost. Am Nat 133:281–287

    Google Scholar 

  • Fahn A (1979) Secretory tissues in plants. Academic Press, London

    Google Scholar 

  • Fairbairn JW, Suwal PN (1961) The alkaloids of hemlock (Conium maculatum L.). II. Evidence for a rapid turnover of the major alkaloids. Phytochemistry 1:38–46

    Google Scholar 

  • Forrest GI (1987) A rangewide comparison of outlying and central lodgepole pine populations based on oleoresin monoterpene analysis. Biochem Syst Ecol 15:19–30

    Google Scholar 

  • Fox LR (1981) Defense and dynamics in plant-herbivore systems. Am Zool 21:853–864

    Google Scholar 

  • Francis MJO, O'Connell M (1969) The incorporation of mevalonic acid into rose petal monoterpenes. Phytochemistry 8:1705–1708

    Google Scholar 

  • Funk C, Koepp AE, Croteau R (1992) Catabolism of camphor in tissue cultures and leaf disks of common sage (Salvia officinalis). Arch Biochem Biophys 294:306–313

    Google Scholar 

  • Gershenzon J, Croteau R (1990) Regulation of monoterpene biosynthesis in higher plants. In: Towers GHN, Stafford HA (eds) Biochemistry of the mevalonic acid pathway to terpenoids. Recent Advances in Phytochemistry, Vol. 24. Plenum Press, New York, pp 99–160

    Google Scholar 

  • Gulmon SL, Mooney HA (1986) Costs of defense and their effects on plant productivity. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 681–698

    Google Scholar 

  • Hefendehl FW, Underhill EW, von Rudloff E (1967) The biosynthesis of the oxygenated monoterpenes in mint. Phytochemistry 6:823–835

    Google Scholar 

  • Hopfinger JA, Kumamoto J, Scora RW (1979) Diurnal variation in the essential oils of Valencia orange leaves. Am J Bot 66:111–115

    Google Scholar 

  • Jaques U, Koster J, Barz W (1985) Differential turnover of isoflavone 7-O-glucoside-6″-O-malonates in Cicer arietinum roots. Phytochemistry 24:949–951

    Google Scholar 

  • Levitt MJ (1973) Rapid methylation of micro amounts of nonvolatile acids. Analyt Chem 45:618–620

    Google Scholar 

  • Lewinsohn E, Savage TJ, Gijzen M, Croteau R (1993) Simultaneous analysis of monoterpenes and diterpenoids of conifer oleoresin. Phytochem Anal 4:220–225

    Google Scholar 

  • Maarse H, Kepner RE (1970) Changes in composition of volatile terpenes in Douglas fir needles during maturation. J Agr Food Chem 18:1095–1101

    Google Scholar 

  • Margna U, Vainjarv T (1981) Buckwheat seedling flavonoids do not undergo rapid turnover. Biochem Physiol Pflanzen 176:44–53

    Google Scholar 

  • Mazzafera P, Crozier A, Magalhaes AC (1991) Caffeine metabolism in Coffea arabica and other species of coffee. Phytochemistry 30:3913–3916

    Google Scholar 

  • Mihaliak CA, Lincoln DE (1989) Changes in leaf mono- and sesquiterpene metabolism with nitrate availability and leaf age in Heterotheca subaxillaris. J Chem Ecol 15:1579–1588

    Google Scholar 

  • Mihaliak CA, Gershenzon J, Croteau R (1991) Lack of rapid monoterpene turnover in rooted planto: Implications for theories of plant chemical defense. Oecologia 87:373–376

    Google Scholar 

  • Molderez M, Nagels L, Parmentier F (1978) Time-course tracer studies on the metabolism of cinnamic acid in Cestrum poeppigii. Phytochemistry 17:1747–1750

    Google Scholar 

  • Muzika RM, Pregitzer KS, Hanover JW (1989) Changes in terpene production following nitrogen fertilization of grand fir (Abies grandis (Dougl.) Lindl.) seedlings. Oecologia 80:485–489

    Google Scholar 

  • Nickerson GB, Likens ST (1966) Gas chromatographic evidence for the occurrence of hop oil components in beer. J Chromatogr 21:1–5

    Google Scholar 

  • Njar VCO, Arnold LM, Banthorpe DV, Branch SA, Christie AC, Marsh DC (1989) Metabolism of exogenous monoterpenes and their epoxides in seedlings of Pinus pinaster Ait. J Plant Physiol 135:628–630

    Google Scholar 

  • Pfander H, Stoll H (1991) Terpenoid glycosides. Nat Prod Rep 8:69–95

    Google Scholar 

  • Regnier FE, Waller GR, Eisenbraun EJ, Auda H (1968) The biosynthesis of methylcyclopentane monoterpenoids. II. Nepetalactone. Phytochemistry 7:221–230

    Google Scholar 

  • Reichardt PB, Chapin FS III, Bryant JP, Mattes BR, Clausen TP (1991) Carbon/nutrient balance as a predictor of plant defense in Alaskan balsam poplar: Potential importance of metabolite turnover. Oecologia 88:401–406

    Google Scholar 

  • Rhoades DF (1979) Evolution of plant chemical defense against herbivores. In: Rosenthal GA, Janzen DH (eds) Herbivores: Their interaction with secondary plant metabolites. 1st ed. Academic Press, New York, pp 3–54

    Google Scholar 

  • Robinson T (1974) Metabolism and function of alkaloids in plants. Science 184:430–435

    Google Scholar 

  • Rosenthal GA (1990) Metabolism of L-canavanine and L-canaline in leguminous plants. Plant Physiol 94:1–3

    Google Scholar 

  • Rosenthal GA, Berge MA (1989) Catabolism of L-canavanine and L-canaline in the jack bean, Canavalia ensiformis (L.) DC. (Leguminosae). J Agr Food Chem 37:591–595

    Google Scholar 

  • Schearer WR (1984) Components of oil of tansy (Tanacetum vulgare) that repel Colorado potato beetles (Leptinotarsa decemlineata). J Nat Proc 47:964–969

    Google Scholar 

  • Schindler T, Kotzias D (1989) Comparison of monoterpene volatilization and leaf-oil composition of conifers. Naturwiss 76:475–476

    Google Scholar 

  • Scora RW, Mann JD (1967) Essential oil synthesis in Monarda punctata. Lloydia 30:236–241

    Google Scholar 

  • Seigler DS (1977) Primary roles for secondary compounds. Biochem Syst Ecol 5:195–199

    Google Scholar 

  • Seigler D, Price PW (1976) Secondary compounds in plants: Primary functions. Am Nat 110:101–105

    Google Scholar 

  • Selmar D, Lieberei R, Biehl B (1988) Mobilization and utilization of cyanogenic glycosides: The linustatin pathway. Plant Physiol 86:711–716

    Google Scholar 

  • Skogsmyr I, Fagerstrom T (1992) The cost of anti-herbivory defence: An evaluation of some ecological and physiological factors. Oikos 64:451–457

    Google Scholar 

  • Southwell IA, Stiff IA (1989) Ontogenetical changes in monoterpenoids of Melaleuca alternifolia leaf. Phytochemistry 28:1047–1051

    Google Scholar 

  • Stahl-Biskup E (1987) Monoterpene glycosides, state-of-the-art. Flav Fragr J 2:75–82

    Google Scholar 

  • Sukhov GV (1958) The use of radiocarbon in the study of biosynthesis of terpenes. In: Extermann RC (ed) Radioisotopes in scientific research. Vol. IV, Pergamon Press, New York, pp 535–547

    Google Scholar 

  • Tallamy DW, Raupp MJ (eds) (1991) Phytochemical induction by herbivores. John Wiley and Sons, New York

    Google Scholar 

  • Thieme H (1965) Die Phenolglykoside der Salicaceen. Planta Med

  • Tuomi J, Niemela P, Chapin FS III, Bryant JP, Siren S (1988) Defensive responses of trees in relation to their carbon/nutrient balance. In: Mattson WJ, Levieux J, Bernard-Dagan C (eds) Mechanisms of woody plant defenses against insects: Search for pattern. Springer-Verlag, New York, pp 57–72

    Google Scholar 

  • Tyson BJ, Dement WA, Mooney HA (1974) Volatilisation of terpenes from Salvia mellifera. Nature 252:119–120

    Google Scholar 

  • Venkatachalam KV, Kjonaas R, Croteau R (1984) Development and essential oil content of secretory glands of sage (Salvia officinalis). Plant Physiol 76:148–150

    Google Scholar 

  • Waller GR, Lee JL-C (1969) Metabolism of the α-pyridone ring of ricinine in Ricinus communis L. Plant Physiol 44:522–526

    Google Scholar 

  • Weiss B, Flück HC (1970) Untersuchungen über die Variabilität von Gehalt und Zusammensetzung des ätherischen Öles in Blatt- und Krautdrogen von Thymus vulgaris L. Pharm Acta Helv 45:169–184

    Google Scholar 

  • Werker E, Fahn A (1969) Resin ducts of Pinus halepensis Mill.-Their structure, development and pattern of arrangement. Bot J Linn Soc 62:379–411

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gershenzon, J., Murtagh, G.J. & Croteau, R. Absence of rapid terpene turnover in several diverse species of terpene-accumulating plants. Oecologia 96, 583–592 (1993). https://doi.org/10.1007/BF00320517

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00320517

Key words

Navigation