Skip to main content
Log in

Decreased chloramphenicol clearance in malnourished Ethiopian children

  • Originals
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Summary

The disposition of chloramphenicol and chloramphenicol monosuccinate has been studied in thirty-four Ethiopian children of varying nutritional status.

After a single intravenous dose corresponding to chloramphenicol 25 mg per kg bodyweight, the plasma clearance of chloramphenicol monosuccinate was decreased only in severely malnourished children with kwashiorkor. Seventeen % of the dose (range 0–51%) was recovered in urine as intact prodrug, indicating incomplete and variable bioavailability of chloramphenicol.

Compared to underweight children, on average marasmic and kwashiorkor subjects exhibited a 2- and 3-fold increase, respectively, in the AUC of chloramphenicol. Elevated AUCs could be traced to reduced hepatic clearance of the drug. The unbound fraction both of chloramphenicol and its prodrug were slightly elevated in serum from kwashiorkor subjects.

The possibility of using a single point measurement of plasma chloramphenicol as a guide to individualized dosage are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambrose PJ (1984) Clinical Pharmacokinetics of chloramphenicol and chloramphenicol succinate. Clin Pharmacokinet 9: 222–238

    Google Scholar 

  • Benet LZ, Galeazzi RL (1979) Noncompartmental determination of the steady-state volume of distribution. J Pharm Sci 15: 1071–1074

    Google Scholar 

  • Buchanan N, Van der Walt LA (1977) Chloramphenicol binding to normal and kwashiorkor sera. Am J Clin Nutr 30: 847–850

    Google Scholar 

  • Chatterjee KK, Mukherjee KL (1968) Phospholipids of the liver in children suffering from protein-calorie undernutrition. Br J Nutr 22: 145–151

    Google Scholar 

  • Doumas BT, Watson WA, Biggs HG (1971) Albumin standards and the measurement of serum albumin with bromocresol green. Clin Chim Acta 31: 87–96

    Google Scholar 

  • Editorial (1970) Classification of infantile malnutrition. Lancet II: 302–303

  • Eriksson M, Paalzow L, Bolme P, Mariam TW (1983) Chloramphenicol pharmacokinetics in Ethiopian children of differing nutritional status. Eur J Clin Pharmacol 24: 819–823

    Google Scholar 

  • Glazko AJ (1966) Identification of chloramphenicol metabolites and some factors affecting metabolic disposition. Antimicrob Agents Chemother 6: 655–665

    Google Scholar 

  • Kauffman RE, Thirumoorthi MC, Buckley JA, Aravind MK, Dajani AS (1981) Relative bioavailability of intravenous chloramphenicol succinate and oral chloramphenicol palmitate in infants and children. J Pediatrics 99: 963–967

    Google Scholar 

  • Koup JR, Lau AH, Brodsky B, Slaughter RL (1979a) Chloramphenicol pharmacokinetics in hospitalized patients. Antimicrob Agents Chemother 15: 651–657

    Google Scholar 

  • Koup JR, Slattery JT, Gibaldi M (1979b) Single point clearance estimation. Res Comm Chem Pathol Pharmacol 25: 559–564

    Google Scholar 

  • Koup JR, Sack CM, Smith AL, Neely NN, Gibaldi M (1981) Rapid estimation of chloramphenicol clearance in infants and children. Clin Pharmacokinet 6: 83–88

    Google Scholar 

  • Krishnaswamy K (1978) Drug metabolism and pharmacokinetics in malnutrition. Clin Pharmacokinet 3: 216–240

    Google Scholar 

  • Krishnaswamy K (1987) Diseases of a Tropical Environment, in Drug Treatment: Principles and Practice of Clinical Pharmacology and Therapeutics, 3rd ed, Avery, G. (Ed.), Chapter 30. Livingstone, Edinburgh, pp. 1273–1315

    Google Scholar 

  • Mehta S, Nain CK, Kalsi HK, Mathur VS (1981) Bioavailability and pharmakokinetics of chloramphenicol palmitate in malnourished children. Ind J Med Res 74: 244–250

    Google Scholar 

  • Nahata MC, Powell DA (1983) Comparative bioavailability and pharmacokinetics of chloramphenicol after intravenous chloramphenicol succinate in premature infants and older patients. Dev Pharmacol Ther 6: 23–32

    Google Scholar 

  • Nahata MC (1987), Serum concentrations and adverse effects of chloramphenicol in pediatric patients. Chemotherapy 33: 322–327

    Google Scholar 

  • Sack CM, Koup JR, Opheim KE, Neeley N, Smith AL (1982) Chloramphenicol succinate kinetics in infants and young children. Ped Pharmacol 2: 93–103

    Google Scholar 

  • Sharma B, Metha S, Nain CK, Mathur VS (1986) Disposition of chloramphenicol in young rhesus monkeys with protein-energy malnutrition. Drug-Nutrient Interactions 4: 333–338

    Google Scholar 

  • Tandon BN, Ramanujan RA, Tandon HD, Gandhi PC (1974) Liver injury in proteincalorie malnutrition: an electron microscopic study. Am J Clin Nutr 27: 550–558

    Google Scholar 

  • Wargin WA, Wurster DE (1983) Determination of the rearrangement kinetics of chloramphenicol-3-monosuccinate using an automated HPLC system. Int J Pharmaceut 15: 37–48

    Google Scholar 

  • Wenk M, Vozeh S, Follath F (1984) Serum level monitoring of antibacterial drugs — a review. Clin Pharmacokinet 9: 475–492

    Google Scholar 

  • WHO Expert Committee (1988) The use of essential drugs — Model list of essential drugs (Fifth List). Technical Report Series 770, World Health Orginsation, Geneva

    Google Scholar 

  • Yamakawa T, Itoh S, Onishi S, Isobe K, Hosoe A, Nishimura Y (1984) Developmental changes in hepatic esterase activity towards chloramphenicol succinate and its Michaelis-Menten constant of liver, kidney and lung in human. Dev Pharmacol Ther 7: 205–212

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashton, M., Bolme, P., Alemayehu, E. et al. Decreased chloramphenicol clearance in malnourished Ethiopian children. Eur J Clin Pharmacol 45, 181–186 (1993). https://doi.org/10.1007/BF00315503

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00315503

Key words

Navigation