Skip to main content
Log in

Geochemical characterization and origin of granitoids from the South Bohemian Batholith in Lower Austria

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Major and 31 minor elements have been determined in 39 large samples of Variscan granitoids from 6 plutons or intrusions from the South Bohemian Batholith (Rastenberg, Weinsberg, Mauthausen, Schrems, Eisgarn and Gebharts). The granitoids are mainly granites but also diorites, tonalites, trondhjemites, granodiorites. Average concentrations of Ba, Th, U, La, Ce, Pb, Nd, Sr and K in the Weinsberg, Mauthausen and Schrems granites exceed those in average felsic I- and S-type granites by factors ranging between 2.1 and 1.3. The granites melts formed at waterundersaturated conditions and intruded at 10 to 15 km depth during late-tectonic and post-tectonic phases of the Variscan orogeny (about 330 to 300 Ma ago). Hydrothermal or low temperature alteration is excluded for the majority of samples from a study of oxygen isotopes. The thickness of the plutons is estimated at about 6 km from heat balance constraints. By analogy with experimental partial melting, three different sources of the granitoids can be identified and chemically characterized: (1) The trondhjemites, tonalites and diorites in the early Rastenberg pluton are products of 15 to 40% melting respectively of a mafic (partly amphibolitic) lower crust. Redwitzites from the West Bohemian Massif which are comparable in age partly resemble the Rastenberg rocks. The mafic sources of the Rastenberg granitoids and redwitzites are crustally contaminated as reflected in their Sr-Nd isotopes. (2) The very large syn-tectonic Weinsberg pluton was formed from about 30% partial melting of a tonalitic lower crust at 800 to 850°C. Its low proportion of ca. 10% restite has a ferrodioritic composition. The post-tectonic fine-grained Mauthausen and Schrems granites which tend to a granodioritic mode, are very low in restite and are also products of melting of a tonalitic source. (3) The youngest (leuco-)granite, the Eisgarn pluton (high in Si, P, Li, Rb, Cs, U,87Sr/86Sr and low in Ca, Sr, Ba) reflects a pelitic source. The change from mafic to tonalitic to pelitic source composition for the granitoid sequence may indicate that the depth of melt formation decreased with time. The concentration of heavy rare earth elements decreased from Weinsberg to Eisgarn granites which indicates an increasing proportion of garnet in the source. The orogenic heat conformable with a heat flow of about 100 mWm-2 was provided by mafic intrusions. An alternative would be a drastic increase of the crustal thickness which cannot be recognized by barometry of the associated metamorphic rocks. Exposed metamorphic country rocks occur in higher amphibolite facies indicating about 5 kbar pressure. Mafic intrusions contain gabbros (Kleinzwettl) or have formed (quartz-)diorites (Gebharts), the latter being contaminated by granitic melts from partial melting of the wall rocks (MASH process). Largescale contamination by crustal materials can be observed in δ18O and in Sr-Nd isotopes. The major mafic activity was probably caused by depression of solidus temperatures in the mantle wedge above a subduction zone where water was available from dehydration of subducted ocean crust. This water initiated partial melting of ultramafic rocks and metasomatism in the uppermost mantle above the level of melting. The water also mobilized highly incompatible elements (Ba, Th, U, La, Ce, Pb, Nd, Sr and K) from the uppermost mantle and transported them into the lower crust. Indicators of a nearby subduction or collision zone of Late Variscan age in addition to the specific association of granitoidal rocks are abundant upper mantle tectonites. An alternate or additional source of metasomatic fluids may have been dehydration of lower crustal rocks during Variscan high-grade metamorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Atherton MP, McCourt WJ, Sanderson LM, Taylor WP (1979) The geochemical character of the segmented Peruvian coastal batholith and associated volcanics. In: Atherton MP, Tarney J (eds) Origin of granite batholiths: geochemical evidence. Shiva, Orpington, pp 45–64

    Google Scholar 

  • Barker F, Millard HT (1979) Geochemistry of the type trondhjemite and three associated rocks, Norway. In: Barker F (ed) Trondhjemites, dacites, and related rocks. Elsevier, Amsterdam, pp 517–529

    Google Scholar 

  • Ben Othman D, Polve M, Allegre CJ (1984) Nd-Sr isotopic composition of granulites and constraints on the evolution of the lower continental crust. Nature 307:510–515

    Google Scholar 

  • Blümel P (1990a) Metamorphism along the SW margin of the Bohemian Massif—An overview. In: Franke W (ed) Paleozoic orogens in Central Europe — geology and gergophysics. (Field guide to Bohemian Massif). IGCP 233, pp 65–75

  • Blümel P (1990b) Variscan syn- and post-tectonic magmatism. In: Franke W (ed) Paleozoic orogens in Central Europe-geology and geophysics. Field guide to Bohemian Massif, IGCP 233, pp 37–47

  • Büsch W, Matthes S, Mehnert KR, Schubert W (1980) Zur genetischen Deutung der Kinzigite im Schwarzwald und Odenwald. Neues Jahrb Mineral Abh 137:223–256

    Google Scholar 

  • Carswell (1991) Variscan highP-T metamorphism and uplift history in the Moldanubian zone of the Bohemian Massif in Lower Austria. Eur J Mineral 3:323–342

    Google Scholar 

  • Carswell DA, Möller C, O'Brien PJ (1989) Origin of sapphirineplagioclase symplectites in metabasites from Mitterbachgraben, Dunkelsteiner Wald granulite complex, Lower Austria. Eur J Mineral 1:455–466

    Google Scholar 

  • Cermak V (1977) Geothermal models of the Bohemian Massif (Variscan) and the western Carpathiens (Alpine) and their mutual relation. Tectonophysics 41:127–137

    Google Scholar 

  • Chappell BW, White AJR (1974) Two contrasting granite types. Paci Geol 8:173–174

    Google Scholar 

  • Clemens JD, Vielzeuf D (1987) Constraints on melting and magma production in the crust. Earth Planet Sci Lett 86:287–306

    Google Scholar 

  • Criss RE, Taylor HP (1986) Meteoric-hydrothermal systems. In: Valley JW, Taylor HP, O'Neil JR (eds) Stable isotopes in high temperature geological processes. (Reviews in mineralogy, vol 16), Mineral Soc Am, Washington, DC

    Google Scholar 

  • Cruden AR (1990) Flow and fabric development during the diapiric rise of magma. J Geol 98:681–698

    Google Scholar 

  • Debon F, Le Fort P (1983) A chemical-mineralogical classification of common plutonic rocks and associations. Trans Soc Edinburgh Earth Sci 73:135–149

    Google Scholar 

  • DePaolo DJ (1981a) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202

    Google Scholar 

  • DePaolo DJ (1981b) A neodymium and strontium isotopic study of the Mesozoic calcalkaline granitic batholiths of the Sierra Nevada and Peninsular Ranges, California. J Geophys Res 86: B11:10470–10488

    Google Scholar 

  • Downes H, Duthou JL (1988) Isotopic and trace-clement arguments for the lower-crustal origin of Hercynian granitoids and pre-Hercynian orthogneisses, Massif Central (France). Chem Geol 68:291–308

    Google Scholar 

  • Ebadi A, Johannes W (1991) Beginning of melting and composition of first melts in the system Qz-Ab-Or-H2O-CO2. Coutrib Mineral Petrol 106:286–295

    Google Scholar 

  • Ellenberger F, Tamain ALG (1980) Hercynian Europe. Episodes 1980:22–27

    Google Scholar 

  • Evensen MN (1978) Rare earth abundances in chondritic meteorites. Geochim Cosmochim Acta 42:1199–1212

    Google Scholar 

  • Finger F, Höck V (1987) Zur magmatischen Entwicklung des Moldanubikums in Oberösterreich. Jahrb Geol BA Wien 129:641–642

    Google Scholar 

  • Frasl G, Finger F (1988) Führer zur Exkursion der Österreichischen Geologischen Gesellschaft ins Mühlviertel und in den Sauwald am 22. und 23. September 1988. Reihe Exkursionsführer Österr Geol Ges

  • Frasl G, Finger F (1991) Geologisch-petrographische Exkursion in den österrcichischen Teil des Südböhmischen Batholiths. Eur J Mineral (Beih 2) 3:23–40

    Google Scholar 

  • Friedel G, von Quadt A, Finger F (1992) Erste Ergebnisse von U/Pb Altersdatierungsarbeiten am Rastenberger Granodiorit im niederösterreichischen Waldviertel. Mitt Österr Mineral Ges 137:131–134

    Google Scholar 

  • Friedel G, von Quadt A, Ochsner A, Finger F (1993) Timing of the Variscan orogeny in the southern Bohemian Massif (NE-Austria) deduced from new U-Pb zircon and monazite dating. Terra Abstr 1:235

    Google Scholar 

  • Fuchs G (1976) Zur Entwicklung der Böhmischen Masse. Jahrb Geol BA Wien 119:45–61

    Google Scholar 

  • Fuchs G, Matura A (1976) Zur Geologie des Kristallins der südlichen Böhmischen Masse. Jahrb Geol BA 119:1–43

    Google Scholar 

  • Goldstein SL, O'Nions RK, Hamilton PJ (1984) A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth Planet Sci Lett 70:221–236

    Google Scholar 

  • Haack U (1982) Radioactivity of rocks. In: Angenheister G (ed) Physical properties of rocks. (Landolt-Börnstein: Numerical data and functional relationships in science and technology — new series). Springer, Berlin Heidelberg New York, pp 433–481

    Google Scholar 

  • Haunschmid B (1988) Das Granitgebiet um Plochwald zwischen Sandl und Windhaag im nordöstlichen Oberösterreich mit besonderer Berücksichtigung des dortigen Plochwalder Granit-Typs und des Pseudokinzigits. Dipl thesis, Uni Salzburg

  • Helz RT (1973) Phase relations of basalts in their melting range atPH2O=5 kbar as a function of oxygen fugacity. II. Melt compositions. J Petrol 14:249–302

    Google Scholar 

  • Helz RT (1976) Phase relations of basalts in their melting range atPH2O=5 kbar as a function of oxygen fugacity. II. Melt compositions. J Petrol 17:139–193

    Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Mineral Petrol 98:455–489

    Google Scholar 

  • Hoefs J (1987) Stable isotope geochemistry. 3rd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314

    Google Scholar 

  • Holl PK, v. Drach V, Müller-Sohnius D, Köhler H (1989) Caledonian ages in Variscan rocks: Rb-Sr and Sm-Nd isotopic variations in dioritic intrusives from the northwestern Bohemian Massif, West Germany. Tectonophysics 157:179–194

    Google Scholar 

  • Holtz F, Johannes W (1991) Genesis of peraluminous granites. I. Experimental investigation of melt compositions at 3 and 5 kbar and various water activities. J Petrol 32:935–958

    Google Scholar 

  • Huang WL, Wyllie PJ (1973) Melting reactions of a muscovitegranite to 35 kbar as a model for fusion of metamorphosed subducted oceanic sediments. Contrib Mineral Petrol 42:1–14

    Google Scholar 

  • Huppert HE, Sparks RSJ (1988) The generation of granitic magmas by intrusion of basalt into continental crust. J Petrol 29:599–624

    Google Scholar 

  • Johannes W, Holtz F (1990) Formation and composition of H2O-undersaturated granitic melts. In: Ashworth JR, Brown M (eds) High temperature metamorphism and crustal anatexis. Unwin and Hyman, London, pp 87–104

    Google Scholar 

  • Johnston AD, Wyllie PJ (1988) Constraints on the origin of Archean trondhjemites based on phase relationships of Nuk gneiss with H2O at 15 kbar. Contrib Mineral Petrol 100:35–46

    Google Scholar 

  • Klob H (1971) Der Freistädter Granodiorit im östlichen Moldanubikum. Verh Geol BA 1971:98–142

    Google Scholar 

  • Kober L (1938) Der gcologische Aufbau Österreichs. Springer, Vienna

    Google Scholar 

  • Koller F (1992) Die Granite im nördlichen Waldviertel-ein Statusbericht aus einem laufenden Forschungsprojekt. Mitt Östcrr Mineral Ges 137:158–160

    Google Scholar 

  • Koller F, Niedermayr G (1981) Die Petrologie der Diorite im nördlichen Waldviertel, Niederösterreich. Tschermaks Mineral Petrol Mitt 28:285–313

    Google Scholar 

  • Kossmat F (1927) Gliederung des varistischen Gebirgsbaues. Abh Sächs Geol LA 1:39

    Google Scholar 

  • Kröner A, Wendt I, Liew TC, Compston W, Todt W, Fiala J, Vankova V, Vanek J (1988) U-Pb zircon and Sm-Nd model ages of high-grade Moldanubian metasediments, Bohemian Massif, Czechoslovakia. Contrib Mineral Petrol 99:257–266

    Google Scholar 

  • Kurat G (1965) Der Weinsberger Granit im südlichen österreichischen Moldanubikum. Tschermaks Mineral Patrol Mitt 9:202–227

    Google Scholar 

  • Kushiro (1982) Density of tholeiite and alkali basalt magmas at high pressures. Annu Rep Dir Geophys Lab Washington Yearb 81:305–309

    Google Scholar 

  • LeMaitre RW (1976) The chemical variability of some common igneous rocks. J Petrol 17:589–637

    Google Scholar 

  • Liew TC, Hofmann AW (1988) Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe: indications from a Nd and Sr isotopic study. Contrib Mineral Petrol 98:129–138

    Google Scholar 

  • Liew TC, McCulloch MT (1985) Genesis of granitoid batholiths of Peninsular Malaysia and implications for models of crustal evolution: evidence from a Nd-Sr isotopic and U-Pb zircon study. Geochim Cosmochim Acta 49:587–600

    Google Scholar 

  • Liew TC, Finger F, Höck V (1989) The Moldanubian granitoid plutons of Austria: chemical and isotopic studies bearing on their cnvironmental setting. Chem Geol 76:41–55

    Google Scholar 

  • Matura (1976) Hypothesen zum Bau und zur geologischen Geschichte des kristallinen Grundgebirges von Südwestmähren und dem niederösterreichischen Waldviertel. Jahrb Geol BA 119:63–74

    Google Scholar 

  • McBirney AR, Murase T (1984) Rheological properties of magmas. Annu Rev Earth Planet Sci 12:337–357

    Google Scholar 

  • McCulloch MT, Chappell BW (1982) Nd isotopic characteristics of S- and I-type granites. Earth Planet Sci Lett 58:51–64

    Google Scholar 

  • McDonough WF, Sun SS, Ringwood AE, Jagoutz E, Hofmann AW (1992) Potassium, rubidium, cesium in the Earth and Moon and the evolution of the mantle of the Earth. Geochim Cosmochim Acta 56:1001–1012

    Google Scholar 

  • Miller CF, Watson EB, Harrison TM (1988) Perspectives on the source, segregation and transport of granitoid magmas. Trans R Soc Edinburgh Earth Sci 79:135–156

    Google Scholar 

  • Moore JG (1959) The quartzdiorite boundary line in the western United States. J Geol 67:198–210

    Google Scholar 

  • Petrakakis K (1986) Metamorphism of high grade gneisses from the Moldanubian zone, Austria, with particular reference to the garnets. J Metamorphic Geol 4:323–344

    Google Scholar 

  • Pitcher WS (1979) Comments on the geological environment of granites. In: Atherton MP, Tarney J (eds) Origin of granite batholiths. geochemical evidence. Shiva, Orpington, pp 1–8

    Google Scholar 

  • Pitcher WS, Atherton MP, Cobbing EJ, Beckinsale RD (eds) (1985) Magmatism at a plate edge: the Peruvian Andes. Wiley, New York

    Google Scholar 

  • Pollack HN, Chapman DS (1977) On the regional variation of heat flow, geotherms and lithospheric thickness. Tectonophysics 38:279–296

    Google Scholar 

  • Puziewicz J, Johannes W (1990) Experimental study of a biotitebearing granitic system under water-saturated and water-under-saturated conditions. Contrib Mineral Petrol 104:397–406

    Google Scholar 

  • von Quadt A, Finger F (1991) Geochronologische Untersuchungen im österreichischen Teil des Südböhmischen Batholiths: U-Pb Datierungen an Zirkonen, Monaziten und Xenothimen des Weinsberger Granits. Eur J Mineral (Beih 1) 3:281

    Google Scholar 

  • Rudnick RL, Presper T (1990) Geochemistry of intermediate- to high-pressure granulites. In: Vielzeuf D, Vidal Ph (eds) Granulites and crustal evolution. (NATO ASI Series) Kluwer Academic Publ, Amsterdam, pp 523–550

    Google Scholar 

  • Rudnick RL, Taylor SR (1986) Geochemical constraints on the origin of Archean tonalitic-trondhjemitic rocks and implication for lower crustal composition. In: Dawson JB, Carswell DA, Hall J, Wedepohl KH (eds) The nature of the lower continental crust. Geol Soc Spec Publ 24, pp 309–317

  • Rushmer T (1991) Partial melting of two amphibolites: Contrasting experimental results under fluid-absent conditions. Contrib Mineral Petrol 107:41–59

    Google Scholar 

  • Rybach L (1976) Radioactive heat production: a physical property determined by the chemistry of rocks. In: Strens RGJ (ed) The physics and chemistry of minerals and rocks. Wiley and Sons, London, pp 309–318

    Google Scholar 

  • Scharbert HG, Carswell DA (1983) Petrology of garnet-clinopyroxene rocks in a granulite facies environment, Bohemian Massif of Lower Austria. Bull Mineral 106:761–774

    Google Scholar 

  • Scharbert HG, Fuchs G (1981) Metamorphe Serien im Moldanubikum Niederösterreichs. Fortschr Mineral (Beih 2) 59:129–152

    Google Scholar 

  • Scharbert S (1966) Mineralbestand und Genesis des Eisgarner Granits in niederösterreichischen Waldviertel. Tschermaks Mineral Petrol Mitt 11:338–412

    Google Scholar 

  • Scharbert S (1987) Rb-Sr Untersuchungen granitoider Gesteine des Moldanubikums in Österreich. Mitt Österr Mineral Ges 132:21–37

    Google Scholar 

  • Scharbert S (1988) Rb-Sr systematics of granitoid rocks of South Bohemian Pluton. In: Kukal Z (ed) Proceedings of the 1st International Conference on the Bohemian Massif. Czech Geol Surv Prague, pp 229–232

  • Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243

    Google Scholar 

  • Sheppard SMF (1986) Characterization and isotopic variations in natural waters. In: Valley JW, Taylor HP, O'Neil JR (eds) Stable isotopes in high temperature geological processes. (Reviews in mineralogy 16), Mineral Soc of Am, Washington, DC

    Google Scholar 

  • Simon K, Hoefs J (1993) O, H, C isotope study of rocks from the KTB pilot hole: crustal profile and constraints on fluid evolution. Contrib Mineral Petrol 114:42–52

    Google Scholar 

  • Springer W (1992) Entstehung granitoider Magmen durch partielle Aufschmelzung basischer Unterkruste: eine experimentelle Studie. Dr. Diss, Köln

  • Storre B, Karotke E (1972) Experimental data on melting reactions of muscovite+quartz in the system K2O-Al2O3-SiO2-H2O to 20 kbar water pressure. Contrib Mineral Petrol 36:343–345

    Google Scholar 

  • Streckeisen A (1967) Classification and nomenclature of igneous rocks. Neues Jahrb Mineral Abh 107:144–214

    Google Scholar 

  • Taylor HP (1988) Oxygen, hydrogen, and strontium isotope constraints on the origin of granites. Trans R Soc Edinburgh, Earth Sci 79:317–338

    Google Scholar 

  • Taylor HP, Sheppard SMF (1986) Igneous rocks: I. Processes of isotopic fractionation and isotope systematics. In: Valley JW, Taylor HP, O'Neil JR (eds) Stable isotopes in high temperature geological processes. (Reviews in mineralogy 16) Mineral Soc of Am, Washington, DC

    Google Scholar 

  • Thiele O (1976) Ein westvergenter kaledonischer Deckenbau im niederösterreichischen Waldviertel? Jahrb Geol BA Wien 119:75–81

    Google Scholar 

  • Thompson AB (1982) Dehydration melting of pelitic rocks and the generation of H2O-undersaturated granitic liquids. Am J Sci 282:1567–1595

    Google Scholar 

  • Tollmann A (1982) Großräumiger variszischer Deckenbau im Moldanubikum und neue Gedanken zum Variszikum Europas. Geotektonische Forsch 64:1–61

    Google Scholar 

  • Troll G (1968) Gliederung der redwitzitischen Gesteine Bayerns nach Stoff-und Gefügemerkmalen. I. Die Typlokalitäten von Marktredwitz in Oberfranken. Abh Bayer Akad Wiss Math Naturwiss 158 K1 NF 133:1–86

    Google Scholar 

  • Turpin L, Cuney M, Friedrich M, Bouchez J, Aubertin M (1990) Meta-igneous origin of Hercynian peraluminous granites in N.W. French Massif Central: implications for crustal history reconstructions. Contrib Mineral Petrol 104:163–172

    Google Scholar 

  • Tuttle OF, Bowen NL (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geol Soc Am Mem 74

  • van Breemen O, Aftalion M, Bowes DR, Dudek A, Misar Z, Povondra P, Vrana S (1982) Geochronological studies of the Bochemian massif, Czechoslovakia, and their significance in the evolution of Central Europe. Trans R Soc Edinburgh Earth Sci 73:89–108

    Google Scholar 

  • Vellmer C (1992) Stoffbestand und Petrogenese von Granuliten und granitischen Gesteinen der südlichen Böhmischen Masse in Niederösterreich. Dr. Diss Göttingen

  • Voshage H, Hofmann AW, Mazzucchelli M, Rivalenti G, Sinigoi S, Raczek I (1990) Crust assimilation by mantle melts in the Ivrea Zone. Nature 347:731–736

    Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Google Scholar 

  • Weber K, Duyster J (1990) Moldanubian zone of the Waldviertel, Lower Austria. In: Franke W (ed) Paleozoic orogens in Central Europe — Geology and geophysics. (Field guide to Bohemian Massif) IGCP 233, pp 99–114

  • Wedepohl KH (1975) The contribution of chemical data to assumptions about the origin of magmas from the mantle. fortschr Mineral 52:141–172

    Google Scholar 

  • Wedepohl KH (1991) Chemical composition and fractionation of the continental crust. Geol Rundsch 80:207–223

    Google Scholar 

  • Wedepohl KH, Heinrichs H, Bridgwater D (1991) Chemical characteristics of typical quartzfeldspatic rocks in the Archean crust of SW and SE Greenland. Contrib Mineral Petrol 107:163–179

    Google Scholar 

  • Wendt JI, Kröner A, Todt W, Fiala J, Rajlich P (1989) 2 Ga zircon ages for Moldanubian basement and the age of the granulite facies metamorphism in southern Bohemia, CSSR. Terra Abstr 1:4

    Google Scholar 

  • Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Mineral petrol 95:407–419

    Google Scholar 

  • White AJR, Chappell BW (1977) Ultrametamorphism and granitoid genesis. Tectonophysics 43:7–22

    Google Scholar 

  • Wickham SM (1987) The segregation and emplacement of granitic magmas. J Geol Soc London 144:281–297

    Google Scholar 

  • Wolf MB, Wyllie PJ (1991) Dehydration-melting of solid amphibolite at 10 kbar: textural development, liquid interconnectivity and application to the segregation of magmas. Mineral Petrol 44:151–179

    Google Scholar 

  • Wyllie PJ (1977) Crustal anatexis: an, experimental review. Tectonophysics 43:41–71

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr J. Zemann on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vellmer, C., Wedepohl, K.H. Geochemical characterization and origin of granitoids from the South Bohemian Batholith in Lower Austria. Contr. Mineral. and Petrol. 118, 13–32 (1994). https://doi.org/10.1007/BF00310608

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00310608

Keywords

Navigation