Skip to main content
Log in

Crystal field spectra and jahn teller effect of Mn3+ in clinopyroxene and clinoamphiboles from India

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Blanfordite (I), winchite (II), and juddite (III), all showing vivid colors and pleochroism, from highly oxidized parageneses of Indian gondites were studied by microprobe, Mössbauer, and microscope-spectrophotometric techniques and by X-ray structure refinements. The compositions of the Mn-bearing minerals were close to diopsideacmite (I) and magnesio-arfvedsonite to magnesio-riebeckite (II and III). Transition metal ions are located inM(1)-octahedra (I) or predominantlyM(2)-octahedra (II, III).

Mössbauer spectra of57Fe(IS, ΔE Q) are typical of octahedral Fe3+ only. Polarized absorption spectra in the UV/VIS/NIR ranges explain color and pleochroism of the minerals. The position of the UV-“edge” is correlated with Fe3+-contents of the minerals, except for judditeEZ, where the edge shows an unusual low energy position. This is most likely due to Mie-scattering of submicroscopic inclusions of braunite with nearly uniform dimensions. In the VIS range, the spectra are dominated by a complex band system between 15,000 and 20,000 cm−1.

Energies and ɛ-values of component bands are compatible with those of Mn3+ d-d transitions in other Mn3+-bearing silicates. The polarization behavior of component bands can best be explained by aC 2(C2″) symmetry of the crystal field. The Jahn-Teller splitting (<9,000 cm−1) of the5 E g ground state of Mn3+ inO h crystal fields is appreciably smaller than in other Mn3+-silicates. Crystal field parameters 10Dq, (I) 13,650, (II) ca. 11,640, and (III) 11,925 cm−1, are near to that in piemontite. The crystal field stabilization energy of Mn3+, (I) 146, (II) ca. 140, (III) 142\({{{\text{kJ}}} \mathord{\left/ {\vphantom {{{\text{kJ}}} {\text{g}}}} \right. \kern-\nulldelimiterspace} {\text{g}}}{\text{ - atom}}_{{\text{Mn}}^{{\text{3 + }}} } \), is appreciably smaller than that found in other Mn3+-silicates (piemontites and manganian andalusites, viridines and kanonaite).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abs-Wurmbach I, Langer K, Tillmans E (1977) Structure and polarized spectra of Mn3+-substituted andalusites (viridines). Naturwissenschaften 64:527–528

    Google Scholar 

  • Abs-Wurmbach I, Langer K, Seifert F, Tillmans E (1981) The crystal chemistry of (Mn3+, Fe3+)-substituted andalusites (viridines and kanonaite), (Al1−x−yMn 3+x Fe 3+y )2(O/SiO4): crystal structure refinements, Mössbauer and polarized optical absorption spectra. Z Kristallogr 155:81–113

    Google Scholar 

  • Amthauer G (1982) Gemischte Valenzzustände des Eisens in Mineralien. Fortschr Mineral 60:119–154

    Google Scholar 

  • Amthauer G, Rossman GR (1984) Mixed valence of iron in minerals with cation clusters. Phys Chem Minerals 11:37–51

    Google Scholar 

  • Anastasiou P, Langer K (1977) Syntheses and physical properties of piemontite Ca2Al3−pMn 3+p (Si2O7/SiO4/O/OH). Contrib Mineral Petrol 60:225–245

    Google Scholar 

  • Bancroft GM, Burns RG (1969) Mössbauer and absorption spectral study of alkali amphiboles. Min Soc Am Spec Pap 2:137–148

    Google Scholar 

  • Brown WL (1971) On lithium and sodium trivalent-metal pyroxenes and crystal field effects. Min Mag 38:43–48

    Google Scholar 

  • Burnham CW, Clark JR, Papike JJ, Prewitt CT (1967) A proposed crystallographic nomenclature for clinopyroxene structures. Z Kristallogr 125:9–119

    Google Scholar 

  • Burns RG, Strens RGJ (1967) Structural interpretation of polarized absorption spectra of the Al-Fe-Mn-Cr-epidotes. Min Mag 36:204–226

    Google Scholar 

  • Burns RG, Nolet DA, Parkin KM, McCammon CA, Schwartz KB (1979) Mixed valence minerals of iron and titanium: correlations of structural, Mössbauer and electronic spectral data. In: Brown DB (ed) Mixed valence compounds. Nato Adv Study Inst. Reidel Publ Comp, Dordrecht, pp 295–336

    Google Scholar 

  • Cannillo E, Oberti R, Ungaretti L (1981) CORANF, un programma per il calcolo e l'elaboraazione di parametri chimici e geometrici degli anfiboli. Rend Soc Ital Mineral Petrol 37:613–621

    Google Scholar 

  • Dollase WA (1973) Mössbauer spectra and iron distribution in the epidote group minerals. Z Kristallogr 144:41–63

    Google Scholar 

  • Dollase WA, Gustafson WI (1982)57Fe Mössbauer spectral analysis of the sodic clinopyroxenes. Am Mineral 67:311–327

    Google Scholar 

  • Faye GH, Nickel EH (1969) On the origin of color and pleochroism in kyanite. Can Mineral 10:35–46

    Google Scholar 

  • Fermor LL (1904) A new form of blue amphibole from Central India. Rec Geol Surv India 31:235–236

    Google Scholar 

  • Fermor LL (1909) The manganese deposits of India. Mem Geol Surv India 37:pp 1294

    Google Scholar 

  • Frentrup KR, Langer K (1981) Mn3+ in garnets: optical absorption spectrum of a synthetic Mn3+-bearing silicate garnet. Neues Jahrb Mineral Mh 245–256

  • Frentrup KR, Langer K (1982) Microscope-absorption-spectrometry of silicate microcrystals in the range 40,000–5,000 cm−1 and its application to garnet end members synthesized at high pressures. In: Schreyer W et al. (eds) High pressure studies in geoscience. Schweizerbart, Stuttgart, pp 247–258

    Google Scholar 

  • Gibb TC, Greenwood NH (1965) Chemical applications of the Mössbauer effect. Part 2. Oxidation states of iron in crocidolite and amosite. Trans Faraday Soc 61:1317–1323

    Google Scholar 

  • Goldman DS, Rossman GR (1977) The spectra of iron in orthopyroxene revisited: the splitting of the ground state. Am Mineral 151–157

  • Hålenius U (1978) A spectroscopic investigation of manganese andalusite. Can Mineral 16:567–575

    Google Scholar 

  • Hålenius U, Langer K (1980) Microscope-photometric methods for non-destructive Fe2+-Fe3+ determinations in chloritoids, (Fe2+, Mn2+, Mg)2(Al, Fe3+)4Si2O10(OH)4. Lithos 13:291–294

    Google Scholar 

  • Hamilton WC (1959) On the isotropic temperature factor equivalent to a given anisotropic temperature factor. Acta Crystallogr 12:609–610

    Google Scholar 

  • Hawthorne FC (1978) The crystal chemistry of amphiboles. VIII. The crystal structure and site chemistry of fluor-riebeckite. Can Mineral 16:187–194

    Google Scholar 

  • Hawthorne FC (1983) The crystal chemistry of amphiboles. Can Mineral 21:173–480

    Google Scholar 

  • Ingamells CO (1960) A new method for “ferrous iron” and “excess oxygen” in rocks, minerals, and oxides. Talanta 4:268–273

    Google Scholar 

  • Kai AT, Larsson S, Hålenius U (1980) The electronic structure and absorption spectrum of manganian andalusite. Phys Chem Minerals 6:77–84

    Google Scholar 

  • Kitamura M, Morimoto N (1975) Distribution of titanium in oxykaersutite. Contrib Mineral Petrol 51:167–172

    Google Scholar 

  • Lahiri D (1971) Mineralogy and genesis of the manganese oxide and silicate rocks in Kajlidongri and surrounding areas, Jabuha District, Madhya Pradesh, India. Econ Geol 66:1176–1185

    Google Scholar 

  • Langer K, Abu-Eid RM, Anastasiou P (1976) Absorptionsspektren synthetischer Piemontite in den Bereichen 43,000–11,000 (232,6–909,1 nm) and 4,000–250 cm−1 (2.5–40 μm). Z Kristallgr 144:434–436

    Google Scholar 

  • Langer K, Abu-Eid RM (1977) Measurements of the polarized absorption spectra of synthetic transition metal-bearing silicate microcrystals in the range 44,000–4,000 cm−1. Phys Chem Minerals 1:273–299

    Google Scholar 

  • Langer K, Frentrup KR (1979) Automated microscope-absorption-spectrometry of rock forming minerals in the range 40,000–5,000 cm−1 (250–2,000 nm). J Microsc 116:311–320

    Google Scholar 

  • Langer K, Lattard D (1984) Mn3+ in garnets II: optical absorption spectra of blythite-bearing, synthetic calderites, Mn 2+[8]3 (Fe 3+1 Mn 3+x ) [6]2 [SiO4]3. Neues Jahrb Mineral Abh 149:129–141

    Google Scholar 

  • Leake BE, Farrow CM, Nayak VK (1981) Further studies on winchite from type locality. Am Mineral 66:625–631

    Google Scholar 

  • Lever ABP (1968) Inorganic electronic spectroscopy. Elsevier, Amsterdam

    Google Scholar 

  • Manning PG (1968) Absorption spectra of the manganese bearing chain silicates pyroxmangite, rhodonite, bustamite, and serandite. Can Mineral 9:348–357

    Google Scholar 

  • Moore RK, White WB (1972) Electronic spectra of transition metal ions in silicate garnets. Can Mineral 11:791–811

    Google Scholar 

  • Nayak VK, Leake BE (1975) On ‘winchite’ from the original locality at Kajlidongri, India. Min Mag 40:395–399

    Google Scholar 

  • North ACT, Phillips DC, Mathews FS (1968) A semi-empirical method of absorption correction. Acta Crystallogr A24:351–369

    Google Scholar 

  • Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation, a quantiative measure of distortion in co-ordination polyhedra. Science 172:567–570

    Google Scholar 

  • Rossi G, Smith DC, Ungaretti L, Domeneghetti MC (1983) Crystal chemistry and cation ordering in the system diopside-jadeite: a detailed study by crystal structure refinement. Contrib Mineral Petrol 83:247–258

    Google Scholar 

  • Rossman GR, Grew ES, Dollase WA (1982) The colors of silimanite. Am Mineral 67:749–761

    Google Scholar 

  • Roy S (1966) Syngenetic Manganese Formations of India. Jadavpur Univ, Calcutta, p 219

    Google Scholar 

  • Roy S (1970) Manganese-bearing minerals from metamorphosed manganese formations of India. I. Juddite. Min Mag 37:708–716

    Google Scholar 

  • Roy S (1971) Studies of manganese-bearing silicate minerals from metamorphosed manganese formations of India. II. Blanfordite, manganoan diopside, and brown manganiferous pyroxene. Min Mag 38:32–42

    Google Scholar 

  • Schläfer HL, Gliemann G (1967) Einführung in die Ligandenfeldtheorie. Akadem Verlagsges, Frankfurt/M

    Google Scholar 

  • Seifert F, Dasgupta HC (1982) A note on the Mössbauer spectrum of57Fe in braunite. Neues Jahrb Mineral Mh:11–15

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A32:751–767

    Google Scholar 

  • Sherman DM (1985) Electronic structures of Fe3+ coordination sites in iron oxides; application to spectra, bonding and magnetism. Phys Chem Minerals 12:161–175

    Google Scholar 

  • Smith G, Hålenius U, Langer K (1982) Low temperature spectral studies of Mn3+-bearing andalusite and epidote type minerals in the range 30,000–5,000 cm−1. Phys Chem Minerals 8:136–142

    Google Scholar 

  • Smith G, Hålenius U, Annersten H, Ackermann L (1983) Optical and Mössbauer spectra of manganese-bearing phlogopites: Fe 3+IV -Mn 2+IV pair absorption as the origin of reverse pleochroism. Am Mineral 68:759–768

    Google Scholar 

  • Smith G, Strens RGJ (1976) Intervalence-transfer absorption in some silicate, oxide, and phosphate minerals. In: Strens RGJ (ed) The physics and chemistry of minerals and rocks. Wiley, New York, pp 583–612

    Google Scholar 

  • Tossell JA, Vaughan DJ, Johnson KH (1974) The electronic structure of rutile, wustite, and hematite from molecular orbital calculations. Am Mineral 58:319–334

    Google Scholar 

  • Ungaretti L (1980) Recent development in x-ray single crystal diffractometry applied to the crystal chemical study of amphiboles. Godisnjak Jugoslavenskog Centra za Kristalografiju 15:29–65

    Google Scholar 

  • Ungaretti L, Smith DC, Rossi G (1981) Crystal chemistry by x-ray structure refinement and electron microprobe analysis of a series of sodic-calcic to alkali amphiboles from the Nybo eclogite pod, Norway. Bull Mineral 104:400–412

    Google Scholar 

  • Ungaretti L, Lombardo B, Domeneghetti MC, Rossi G (1983) Crystal chemical evolution of amphiboles from eclogitised rocks of the Sesia Lanzo Zone, Italian Western Alps. Bull Mineral 106:645–672

    Google Scholar 

  • Whitfield HJ, Freeman AG (1967) Mössbauer study of amphiboles. J Inorg Nucl Chem 29:903–914

    Google Scholar 

  • Wilson EG, Decius JC, Cross PC (1955) Molecular vibrations. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghose, S., Kersten, M., Langer, K. et al. Crystal field spectra and jahn teller effect of Mn3+ in clinopyroxene and clinoamphiboles from India. Phys Chem Minerals 13, 291–305 (1986). https://doi.org/10.1007/BF00308346

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00308346

Keywords

Navigation