Skip to main content
Log in

Structural defects in microcrystalline silica

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The structure of the microcrystalline silica varieties chalcedony, flint, moganite, opal-C and -CT is characterized by X-ray powder diffractometry and transmission electron microscopy (TEM). The role of impurities is investigated by infrared spectroscopy and chemical analysis.

Microcrystalline opal, chalcedony and flint have a disordered intergrowth structure composed of cristobalite and tridymite domains in opal, and quartz and moganite domains in chalcedony and flint. Each constituent phase has different cell dimensions and symmetry. The main impurity is water which is enriched at the intergrowth interfaces. Density and refractive indices of microcrystalline silica depend on the water content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aines RD, Kirby SH, Rossman GR (1984) Hydrogen speciation in synthetic quartz. Phys Chem Minerals 11:204–212

    Google Scholar 

  • Aines RD, Rossman GR (1984) Water in minerals? A peak in the infrared. J Geophys Res 89:4059–4071

    Google Scholar 

  • Bernauer F (1927) Über Zickzackbänderung (Runzelbänderung) und verwandte Polarisationserscheinungen an Kristallen und Kristallaggregaten. Neues Jahrb Mineral Geol Palaeontol Beil-Bd 55:92–143

    Google Scholar 

  • Brunner GO, Wondratschek H, Laves F (1961) Ultrarotuntersuchungen über den Einbau von H in natürlichem Quarz. Z. Elektrochem 65:735–750

    Google Scholar 

  • Burnham C (1963) LCLSQ program for least squares refinement of lattice constants, unpublished

  • Chakraborty D, Lehmann G (1976) Distribution of OH in synthetic and natural quartz crystals. J Solid State Chem 17:305–311

    Google Scholar 

  • Chakraborty D, Lehmann G (1978) On the fine structure in the infrared spectra of clear natural quartz, amethyst, citrine and synthetic quartz in the 3,400 cm−1 region. Z Naturforsch 33a:290–293

    Google Scholar 

  • Diffrac 11: Fortran software system for x-ray diffraction, version 2.2 (1984)

  • Dodd DM, Fraser DB (1965) The 3,000–3,900 cm−1 absorption bands and anelasticity in crystalline alpha-quartz. J Phys Chem Solids 26:673–686

    Google Scholar 

  • Flörke OW (1955) Zur Frage des „Hoch“-Cristobalits in Opalen, Bentoniten und Gläsern. Neues Jahrb Mineral Monatsh 10:217–233

    Google Scholar 

  • Flörke OW (1967) Die Modifikationen von SiO2 Fortschr Mineral 44:181–230

    Google Scholar 

  • Flörke OW, Jones JB, Schmincke HU (1976) A new microcrystalline silica mineral from Gran Canaria. Z Kristallogr 143:156–165

    Google Scholar 

  • Flörke OW, Köhler-Herbertz B, Langer K, Tönges I (1982) Water in microcrystalline quartz of volcanic origin: agates. Contrib Mineral Petrol 80:324–333

    Google Scholar 

  • Flörke OW, Flörke U, Giese U (1984) Moganite, a new microcrystalline silica mineral. Neues Jahrb Mineral Abh 149:325–336

    Google Scholar 

  • Frondel C (1978) Characters of quartz fibers. Am Mineral 63:17–27

    Google Scholar 

  • Frondel C (1982) Structural hydroxyl in chalcedony (type B quartz). Am Mineral 67:1248–1257

    Google Scholar 

  • Graetsch H, Flörke OW, Miehe G (1985) The nature of water in chalcedony and opal-C from Brazilian agate geodes. Phys Chem Minerals 12:300–306

    Google Scholar 

  • Hambleton FH, Hockey JA, Taylor JAG (1966) Investigation by infrared spectroscopic methods of deuterium exchange properties of aerosol silicas. Trans Faraday Soc 63/I:801–807

    Google Scholar 

  • Hartmann P (1959) La morphologie structurale de quartz. Bull Soc Franc Min Cryst 82:335–340

    Google Scholar 

  • Hoffmann W, Kockemeyer M, Löns J, Vach C (1983) The transformation of monoclinic low-tridymite MC to a phase with an incommensurate superstructure. Fortschr Mineral 61 Beih 1:96–98

    Google Scholar 

  • Iijima A, Tada R (1981) Silica diagenesis of neogene diatomaceous and volcanoclastic sediments in northern Japan. Sedimentology 28:185–200

    Google Scholar 

  • JCPDS, Powder diffraction file, published by Joint Committee on Powder Diffraction Standards, former ASTM, Philadelphia 1977

  • Jagodzinski H, Laves F (1948) Eindimensional fehlgeordnete Kristallgitter. Schweiz Mineral Petrol Mitt 28:456–467

    Google Scholar 

  • Jahn C (1983) Strukturprobleme von Tridymit und Cristobalit. Diplomarbeit, Ruhr-Universität Bochum

  • Jayaraman A (1953) The structure and optical behaviour of chalcedony. Proc Indian Acad Sci 38A:441–449

    Google Scholar 

  • Jones JB, Segnit ER (1971) The nature of opal. I. Nomenclature and constituent phases. J Geol Soc Aust 18:57–68

    Google Scholar 

  • Kats A (1962) Hydrogen in alpha-quartz. Philips Res Rep 17:133–195, 201–279

    Google Scholar 

  • Langer K, Flörke OW (1974) Near infrared absorption spectra (4,000–9,000 cm−1) of opals and the role of “water” in these SiO2nH2O minerals. Fortschr Mineral 52:17–51

    Google Scholar 

  • Lindner B, Rudert V (1969) Eine verbesserte Methode zur Bestimmung des gebundenen Wassers in Gesteinen, Mineralen und anderen Festkörpern. Z Anal Chem 248:21–24

    Google Scholar 

  • McLaren AC, Cook RF, Hyde ST, Tobin RC (1983) The mechanisms of the formation and growth of water bubbles and associated dislocation loops in synthetic quartz. Phys Chem Minerals 9:79–94

    Google Scholar 

  • Micheelsen H (1966) The structure of dark flint from Stevns, Denmark. Dansk Geol For Medd, Kobenhavn 16:285–368

    Google Scholar 

  • Miehe G, Graetsch H, Flörke OW (1984) Crystal structure and growth fabric of length-fast chalcedony. Phys Chem Minerals 10:197–199

    Google Scholar 

  • Mitsui K, Taguchi K (1977) Silica mineral diagenesis in neogene tertiary shales in the Tempoku district, Hokkaido, Japan. J Sed Petrol 47:158–167

    Google Scholar 

  • Mizutani S (1977) Progressive ordering of cristobalitic silica in the early stage of diagenesis. Contrib Mineral Petrol 61:129–140

    Google Scholar 

  • Murata KL, Nakata JK (1974) Cristobalitic stage in the diagenesis of diatomaceous shale. Science 184:567–568

    Google Scholar 

  • Nuttal RHD, Weil JA (1980) Two hydrogenic trapped-hole species in alpha-quartz. Solid State Commun 33:99–102

    Google Scholar 

  • Pines BY, Sirenko AF (1962) Derivation of the lattice distortion and spread in block size by means of harmonic analysis applied to x-ray reflections. Sov Phys-Crystallogr 7:15–21

    Google Scholar 

  • Rad U v (1979) SiO2-Diagenese in Tiefseesedimenten. Geol Rundsch 68:1025–1036

    Google Scholar 

  • Raman CV, Jayaraman A (1955) On the optical behaviour of cryptocrystalline quartz. Proc Indian Acad Sci 41A:1–6

    Google Scholar 

  • Rothman RL, Cohen JB (1969) A new method for Fourier analysis of shapes of x-ray peaks and its application to line broadening and intensity measurements. Adv X-ray Analysis 12:208–235

    Google Scholar 

  • Schneider H, Flörke OW (1986) High temperature transformation of tridymite single crystals to cristobalite. Z Kristallogr in press

  • Segnit ER, Stevns TJ, Jones JB (1965) The role of water in opal. J Geol Soc Aust 12:211–226

    Google Scholar 

  • Stokes AR (1948) A numerical fourier method for the correction of width and shapes of lines on x-ray powder photographs. Proc Phys Soc London 61:381–391

    Google Scholar 

  • Thompson WK (1965) An infrared study of water adsorbed on silica. Proc Brit Ceram Soc 5:143–151

    Google Scholar 

  • Warren BE, Averbach BL (1950) The effect of cold-work distortion on x-ray patterns. J Appl Phys 21:595–598

    Google Scholar 

  • Wilkins RWT, Sabine W (1973) Water content of some nominally anhydrous silicates. Am Mineral 58:508–516

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graetsch, H., Flörke, O.W. & Miehe, G. Structural defects in microcrystalline silica. Phys Chem Minerals 14, 249–257 (1987). https://doi.org/10.1007/BF00307990

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00307990

Keywords

Navigation