Skip to main content
Log in

The influence of the retinal inhomogeneity on the perception of spatial patterns

  • Published:
Kybernetik Aims and scope Submit manuscript

Abstract

From the fact that the retina is rather inhomogeneous, it can be inferred that the perception of spatial patterns of appreciable extent will be dependent on the retinal location. Anatomical, electrophysiological and psychophysical findings substantiate the claim that the retina is very inhomogeneous of composition. In order to investigate the influence of this inhomogeneity on the perception of patterns, a model of spatiotemporal signal processing in the retina was developed on the basis of a paradigm for the Weber type adaptation. Such “scaling-ensembles” proved successful in the prediction of spatiotemporal modulation transfer in the human fovea (Koenderink et al., 1971). One prediction of the present model is that certain spatial patterns are optimally detected at well defined retinal locations, dependent on the spatial frequency content of the stimulus. A confrontation of the model's predictions with measurements published by Bryngdahl (1966) enabled us to estimate some of the relevant parameters of the retinal receptive fields as a function of the eccentricity. We obtained estimates that compare reasonably well with previously known values; for instance with values of acuity and anatomical measurements. The present discussion bears relevance on the question of whether the retina is composed of independently tuned spatial frequency filters at any retinal location, or whether the tuning is with respect to the eccentricity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alpern, M.: Introduction to movements of the eyes. In: The eye, ed. H. Davson, vol. III, chap. 1, 4. New York: Academic Press 1962.

    Google Scholar 

  • Aubert, H.: Physiologie der Netzhaut. Breslau: Morgenstern 1865.

    Google Scholar 

  • Békésy, G. von: Neural inhibitory units of the eye and skin. Quantitative description of contrast phenomena. J. opt. Soc. Amer. 50, 1060 (1960).

    Google Scholar 

  • Boycott, B. B., Bowling, J. E.: Organization of the primate retina: light microscopy. Phil. Trans. B255, 109–176 (1969).

    Google Scholar 

  • Bryngdahl, O.: Perceived contrast variation with eccentricity of spatial sine-wave stimuli. Vision Res. 6, 553–565 (1966).

    CAS  PubMed  Google Scholar 

  • Campbell, F. W., Robson, J. G.: Application of Fourier analysis to the visibility of gratings. J. Physiol. (Lond.) 197, 551–566 (1968).

    CAS  Google Scholar 

  • Daitch, J. M., Green, D. G.: Contrast sensitivity of the human peripheral retina. Vision Res. 9, 949–952 (1969).

    Article  Google Scholar 

  • Daniel, P. M., Whitteridge, D.: J. Physiol. (Lond.) 159, 203–221 (1961).

    CAS  Google Scholar 

  • Dor, H.: Beiträge zur Electrotherapie der Augenkrankheiten. Albrecht v. Graefes Arch. Ophthal. 19, 316 (1873).

    Google Scholar 

  • Druault, A.: Astigmatisme des rayons pénétrant obliquement dans l'oeil. Application de la skiascopie (1). Albrecht v. Graefes Arch. Ophthal. 20, 21 (1900).

    Google Scholar 

  • Fischer, B., May, H. U.: Invarianzen in der Katzenretina: Gesetzmäßige Beziehungen zwischen Empfindlichkeit, Größe und Lage receptiver Felder von Ganglienzellen. Exp. Brain Res. 11, 448–464 (1970).

    Article  CAS  PubMed  Google Scholar 

  • Helmholtz, H. von: Handbuch der physiologischen Optik, vol. 2. Hamburg: Voss 1911.

    Google Scholar 

  • Hylkema, B. S.: Examination of the visual field by determining the fusion frequency. Acta ophthal. (Kbh.) 20, 181–193 (1942).

    Google Scholar 

  • Jacobs, G. H., Yolton, R. L.: Center-surround balance in receptive fields of cells in the lateral geniculate nucleus. Vision Res. 10, 1127–1144 (1970).

    Article  CAS  PubMed  Google Scholar 

  • Jung, R.: Neuronal mechanisms of pattern vision and motion detection. In: Sensory processes at the neuronal and behavioral levels, ed. G. V. Gersuni. New York: Academic Press 1971.

    Google Scholar 

  • Jung, R., Spillmann, L.: Receptive field estimation and perceptual integration in human vision. In: Early experience and visual information processing in perceptual and reading disorders. Washington D. C.: Nat. Acad. Sciences 1970.

    Google Scholar 

  • Kelly, D. H.: J0 stimulus patterns for visual research. J. opt. Soc. Amer. 50, 1115 (1960).

    CAS  Google Scholar 

  • Koenderink, J. J., Grind, W. A. van de, Bouman, M. A.: Models of retinal signal processing at high luminances. Kybernetik 6, 227–237 (1970).

    Article  CAS  PubMed  Google Scholar 

  • Koenderink, J. J., Grind, W. A. van de, Bouman, M. A.: Foveal information processing at photopic luminances. Kybernetik 8, 128–144 (1971).

    Article  CAS  PubMed  Google Scholar 

  • Le Grand, Y.: Form and space vision, chap. 8. Bloomington: Indiana University Press 1967.

    Google Scholar 

  • Lipetz, L. E.: Glial control of neuronal activity. Trans. IEEE, MIL-7, 144 (1963).

    Google Scholar 

  • Nes, F. L. van: Experimental studies in spatiotemporal contrast transfer by the human eye. Utrecht: Thesis R. U. 1968.

    Google Scholar 

  • Nes, F. L. van, Koenderink, J. J., Nas, H., Bouman, M. A.: Spatiotemporal modulation transfer in the human eye. J. opt. Soc. Amer. 57, 1082 (1967).

    Google Scholar 

  • Østerberg, G.: Topography of the layer of rods and cones in the human retina. Acta ophthal. (Kbh.), Suppl. 6, 1–102 (1935).

    Google Scholar 

  • Polyak, S.: The retina. Chicago: Chicago University Press 1941.

    Google Scholar 

  • Rolls, E. T., Cowey, A.: Topography of the retina and striate cortex and its relationship to visual acuity in Rhesus monkeys and Squirrel monkeys. Exp. Brain Res. 10, 298–310 (1970).

    Article  CAS  PubMed  Google Scholar 

  • Schade, O. H., Sr.: Optical and photoelectric analog of the eye. J. opt. Soc. Amer. 46, 721 (1956).

    Google Scholar 

  • Sperling, G.: Models of visual adaptation and contrast detection. Perception and Psychophysics 8, 143 (1970).

    Google Scholar 

  • Svaetichin, G., Negishi, H., Drujan, B., Muriel, C.: S-potential and retinal automatic control systems. In: Proc. First Eur. Biophysics Congr. vol. V, eds. E. Broda, A. Locker, H. Springer-Lederer. Vienna 1971.

    Google Scholar 

  • Troxler, D.: Über das Verschwinden gegebener Gegenstände innerhalb unseres Gesichtskreises. Ophthalmol. Bibliothek, eds. Himly and Schmidt, Jena 2, 51–53 (1804).

  • Vilter, V.: Recherche biométrique sur l'organisation synaptique de la rétine humaine. C.R. Soc. Biol. (Paris) 143, 830 (1949).

    Google Scholar 

  • Wertheim, T.: Über die indirekte Sehschärfe. Z. Psychol. 7, 172–187 (1894).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Doorn, A.J., Koenderink, J.J. & Bouman, M.A. The influence of the retinal inhomogeneity on the perception of spatial patterns. Kybernetik 10, 223–230 (1972). https://doi.org/10.1007/BF00288741

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00288741

Keywords

Navigation