Skip to main content
Log in

An experimental investigation of the stability of converging cylindrical shock waves in air

  • Originals
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

An experimental study was made of the stability of converging cylindrical shock waves. The experiments were conducted on annular shock tubes equipped with a double exposure holographic interferometer in the Stoßwellenlabor, RWTH Aachen, and in the Institute of High Speed Mechanics, Tohoku University, Sendai, for shock Mach numbers of 1.1 to 2.1 in air. By comparing these two different shock tube experiments, it is found that in the former facility the mode-three instability is predominant at the center of convergence, whereas the mode-four instability appears in the latter setup. The instabilities are denoted in this way because the shock and the flow field behind it reveal a remarkable triangular and quadrangular symmetry, respectively. It is concluded that the converging cylindrical shock wave is always unstable and sensitive to the structure of the annular shock tube. Usefulness of holographic interferometry to this kind of shock wave research is also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Butler, D. S. 1954: Converging spherical and cylindrical shocks. Rep. No. 54/54 Armament Research and Development Establishment, Ministry of Supply, Fort Halstead, Kent, GB

    Google Scholar 

  • Duong, D. Q.; Milton, B. E. 1985: The Mach-reflection of shock waves in converging, cylindrical channels. Exp. Fluids 3, 161–168

    Google Scholar 

  • Fong, K.; Ahlborn, B. 1979: Stability of converging shock waves. Phys. Fluids 22, 416–421

    Google Scholar 

  • Fujiwara, T.; Sugimura, T.; Mizoguchi, K.; Taki, S. 1973: Stability of converging cylindrical detonation. J. Jpn. Soc. Aero. Space Sci. 21, 8–14

    Google Scholar 

  • Gardner, J. H.; Book, D. L.; Bernstein, I. B. 1982: Stability of imploding shocks in the CCW approximation. J. Fluid Mech. 114, 41–58

    Google Scholar 

  • Glass, I. I.; Sagie, D. 1982: Application of explosive-driven implosions to fusion. Phys. Fluids 25, 269–270

    Google Scholar 

  • Glass, I. L.; Sharma, S. P. 1976: Production of diamonds from graphite using explosive-driven implosions. AIAA J. 14, 402–404

    Google Scholar 

  • Guderley, G. 1942: Starke kugelige und zylindrische Verdichtungsstöße in der Nähe des Kugelmittelpunktes bzw. der Zylinderachse. Luftfahrt Forsch. 19, 302–312

    Google Scholar 

  • Itoh, T.; Abe, K. 1984: Simulation of instability of cylindrically converging shock waves. Proc. 4th Int. Conf. Applied Numerical Modeling, 666–670

  • Kleine, H. 1985: Time resolved shadowgraphs of focusing cylindrical shock waves. Study treatise at the StoBwellenlabor, RWTH Aachen, FRG

    Google Scholar 

  • Knystautas, R.; Lee, B. H. K.; Lee, J. H. S. 1969: Diagnostic experiments on converging detonations. Phys. Fluids. Suppl. I, 165–168

    Google Scholar 

  • Lazarus, R. B. 1982: One-dimensional stability of self-similar converging flows. Phys. Fluids 25, 1146–1155

    Google Scholar 

  • Mishkin, E. A.; Fujimoto, Y. 1978: Analysis of a cylindrical imploding shock wave. J. Fluid Mech. 89, 61–78

    Google Scholar 

  • Nakamura, Y. 1983: Analysis of self-similar problems of imploding shock waves by the method of characteristics. Phys. Fluids 26, 1234–1239

    Google Scholar 

  • de Neef, T.; Nechtman, C. 1978: Numerical study of the flow due to a cylindrical implosion. Comput. Fluids 6, 185–202

    Google Scholar 

  • Payne, R. B. 1957: A numerical method for a converging cylindrical shock. J. Fluid Mech. 2, 185–200

    Google Scholar 

  • Perry, R. W.; Kantrowitz, A. 1951: The production and stability of converging shock waves. J. Appl. Phys. 22, 878–886

    Google Scholar 

  • Saito, T.; Glass, I. 1. 1979: Applications of random-choice method to problems in shock and detonation wave dynamics. UTIAS Rep. No. 240

  • Sod, G. A. 1977: A numerical study of a converging cylindrical shock. J. Fluid Mech. 83, 785–794

    Google Scholar 

  • Stanyukovich, K. P. 1960: Unsteady motion of continuous media. Oxford: Pergamon Press

    Google Scholar 

  • Takayama, K. 1983: Application of holographic interferometry to shock wave research. Proc. SPIE 398, 174–180

    Google Scholar 

  • Takayama, K.; Honda, M.; Onodera, O. 1977: Shock propagation along 90 degree bends. Rep. Inst. High Speed Mech. Tohoku Univ. 35, 83–111

    Google Scholar 

  • Takayama, K.; Onodera, O.; Hoshizawa, Y. 1984: Experiments on the stability of converging cylindrical shock waves. Theor. Appl. Mech. 32, 117–127

    Google Scholar 

  • Terao, K.; Sato, T. 1973: A study of a radially divergentconvergent detonation wave. In: Recent developments in shock tube research (eds. Bershader, D.; Griffith, W.), pp. 646–551. Stanford: Stanford Univ. Press

    Google Scholar 

  • Van Dyke, M.; Guttmann, A. J. 1982: The converging shock wave from a spherical or cylindrical piston. J. Fluid Mech. 120, 451–462

    Google Scholar 

  • Wang, J. C. T. 1982: On the theory of imploding shocks. J. Appl. Math. Phys. 33, 53–62

    Google Scholar 

  • Wu, J. H. T.; Neemeh, R. A.; Ostrowski, P. P.; Elabdin, M. N. 1977: Production of converging cylindrical shock waves by finite element conical contractions. In: Shock Tubes and Shock Wave Research, Proc. Eleventh Intern. Symp. on Shock Tubes and Waves, pp. 107–114, Seattle: Univ. Washington Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To Prof. Dr. sq. techn. Dr.-Ing. e.h. Fritz Schultz-Grunow on the occasion of his 80th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takayama, K., Kleine, H. & Grönig, H. An experimental investigation of the stability of converging cylindrical shock waves in air. Exp. Fluids 5, 315–322 (1987). https://doi.org/10.1007/BF00277710

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00277710

Keywords

Navigation