Skip to main content
Log in

Physiological regulation of competence induction for natural transformation in Acinetobacter calcoaceticus

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Acinetobacter calcoaceticus induced competence for natural transformation maximally after dilution of a stationary culture into fresh medium. Competence was gradually lost during prolonged exponential growth and after entrance into the stationary state. Growth cessation and nutrient upshift were involved in the induction of competence. The level of competence of a chemostat culture of A. calcoaceticus was dependent on the nature of the growth limitation. Under potassium limitation a transformation frequency of ±1x10-4 was obtained. This frequency was independent of the specific growth rate. In phosphate-, nitrogen-, and carbon-limited chemostat cultures, in contrast, the transformation frequency depended on the specific growth rate; the transformation frequency equalled±10-4 at dilution rates close to µmax of 0.6h-1 and decreased to ±10-7 at a dilution rate of 0.1 h-1. We conclude that (1) DNA uptake for natural transformation in A. calcoaceticus does not serve a nutrient function and (2) competence induction is regulated via a promoter(s) that resembles the fis promoter from Escherichia coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlquist EF, Fewson CA, Ritchie DA, Podmore J, Rowell V (1980) Competence for genetic transformation in Acinetobacter calcoaceticus NCIB8250. FEMS Microbiol Lett 7:107–109

    Google Scholar 

  • Augustin LB, Jacobson BA, Fuchs JA (1994) Escherichia coli Fis and DnaA proteins bind specifically to the nrd promoter region and affect expression of an nrd-lac fusion. J Bacteriol 176: 378–387

    Google Scholar 

  • Avery OT, Mcleod CM, McCarthy M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J Exp Med 9:137–158

    Google Scholar 

  • Ball CA, Osuna R, Ferguson KC, Johnson RC (1992) Dramatic changes in Fis levels upon nutrient upshift in Escherichia coli. J Bacteriol 174:8043–8056

    Google Scholar 

  • Bernstein H, Byers GS, Michod RE (1981) Evolution of sexual reproduction: importance of DNA repair, complementation and variation. Am Naturalist 117:537–549

    Google Scholar 

  • Bertani G, Baresi L (1987) Genetic transformation in the methanogen Methanococcus voltae PS. J Bacteriol 169:2730–2738

    Google Scholar 

  • Biswas GD, Sox T, Blackman E, Sparling PF (1977) Factors affecting genetic transformation of Neisseria gonorrhoeae. J Bacteriol 129:983–992

    Google Scholar 

  • Biswas GD, Thompson SA, Sparling PF (1989) Gene transfer in Neisseria gonorrhoeae. Clin Microbiol Rev 2S:24–28

    Google Scholar 

  • Crabbendam PM, Neijssel OM, Tempest DW (1985) Metabolic and energetic aspects of the growth of Clostridium butyricum on glucose in chemostat culture. Arch Microbiol 142:375–382

    Google Scholar 

  • Cruze JA, Singer JT, Finnerty WR (1979) Conditions for quantitative transformation in Acinetobacter calcoaceticus. Curr Microbiol 3:129–132

    Google Scholar 

  • Dubnau D (1991) Genetic competence in Bacillus subtilis. Microbiol Rev 55:395–424

    Google Scholar 

  • Elgar MA, Crozier RH (1988) Sex with dead cells may be better than no sex at all. Trends Ecol Evol 3:249

    Google Scholar 

  • Essich E, Stevens B Jr, Porter RD (1990) Chromosomal transformation in the cyanobacterium Agmenellum quadruplicatum. J Bacteriol 172:1916–1922

    Google Scholar 

  • Gibbs CP, Reimann B-Y, Schulz E, Kaufmann A, Haas R, Meyer TF (1989) Reassortment of pilin genes in Neisseria gonorrhoeae occurs by two distinct mechanisms. Nature 338:651–652

    Google Scholar 

  • Hueting S, de Lange T, Tempest DW (1979) Energy requirement for maintenance of the transmembrane potassium gradient in Klebsiella aerogenes NCTC 418: a continuous culture study. Arch Microbiol 123:183–188

    Google Scholar 

  • Ish-Horowicz D, Burke FJ (1981) Rapid and efficient cosmid cloning. Nucleic Acids Res 9:2989–2999

    Google Scholar 

  • Juni E (1972) Interspecies transformation of Acinetobacter: genetic evidence for a ubiquitous genus. J Bacteriol 112:917–931

    Google Scholar 

  • Juni E (1974) Simple genetic transformation assay for rapid diagnosis of Moraxella osloensis. Appl Microbiol 27:16–24

    Google Scholar 

  • Juni E (1978) Genetics and physiology of Acinetobacter. Ann Rev Microbiol 32:349–371

    Google Scholar 

  • Juni E, Janik A (1969) Transformation of Acinetobacter calcoaceticus (Bacterium anitratum). J Bacteriol 98:281–288

    Google Scholar 

  • Michod RE, Wojciechowski MF, Hoelzer MA (1988) DNA repair and the evolution of transformation in the bacterium Bacillus subtilis. Genetics 118:31–39

    Google Scholar 

  • Mulder MM, Mattos MJT de, Postrna PW, Dam K van (1986) Energetic consequences of multiple K+ uptake systems. Biochim Biophys Acta 851:223–228

    Google Scholar 

  • Mulder MM, Gulden HML van der, Postma PW, Dam K van (1988) Continued growth of Escherichia coli after stopping medium addition to a potassium-limited chemostat culture. J Gen Microbiol 134:777–783

    Google Scholar 

  • Ormerod JG (1988) Natural genetic transformation in Chlorobium. In: Olson JM, Ormerod JG, Amesz J (eds) Green photosynthetic bacteria. Plenum Press, New York

    Google Scholar 

  • Page WJ, Tigerstrom M von (1979) Optimal conditions for transformation of Azotobacter vinelandii. J Bacteriol 139:1058–1061

    Google Scholar 

  • Palmen R, Vosman B, Kok R, Zee JR van der, Hellingwerf KJ (1992) Characterization of transformation-deficient mutants of Acinetobacter calcoaceticus. Mol Microbiol 6:1747–1754

    Google Scholar 

  • Palmen R, Vosman B, Buijsman P, Breek CKD, Hellingwerf KJ (1993) Physiological characterization of natural transformation in Acinetobacter calcoaceticus. J Gen Microbiol 139:295–305

    Google Scholar 

  • Pennock J, Tempest DW (1988) Metabolic and energetic aspects of the growth of Bacillus stearothermophilus in glucose-limited and glucose-sufficient chemostat culture. Arch Microbiol 150:452–459

    Google Scholar 

  • Redfield RJ (1988) Evolution of bacterial transformation: is sex with dead cells ever better than no sex at all? Genetics 119: 213–221

    Google Scholar 

  • Sawula RV, Crawford IP (1972) Mapping of the tryptophan genes of Acinetobacter calcoaceticus by transformation. J Bacteriol 112:797–805

    Google Scholar 

  • Siebers A, Altendorf K (1993) K+-translocating Kdp-ATPases and other bacterial P-type ATPases. In: Bakker E (ed) Alkali cation transport systems in prokaryotes. CRC Press, Ann Arbor, pp 225–252

    Google Scholar 

  • Stewart GJ, Carlson CA (1986) The biology of natural transformation. Ann Rev Microbiol 40:211–235

    Google Scholar 

  • Tirgari S, Moseley BEB (1980) Transformation in Micrococcus radiodurans: measurement of various parameters and evidence for multiple, independently segregating genomes per cell. J Gen Microbiol 119:287–296

    Google Scholar 

  • Trombe M-C, Clavé C, Manias J-M (1992) Calcium regulation of growth and differentiation in Streptococcus pneumoniae. J Gen Microbiol 138:77–84

    Google Scholar 

  • Veldkamp H (1976) Continuous culture in microbial physiology and ecology. Meadowfield Press, Durham

    Google Scholar 

  • Vicente M, Kushner SR, Garrido T, Aldea M (1991) The role of the ‘gearbox’ in the transcription of essential genes. Mol Microbiol 5:2085–2091

    Google Scholar 

  • Vosman B, Hellingwerf KJ (1991) Molecular cloning and functional characterization of the recA analog from Pseudomonas stutzeri and construction of a P. stutzeri recA mutant. Antonie Van Leeuwenhoek 59:115–123

    Google Scholar 

  • Wahlund TM, Madigan MT (1991) Nitrogen fixation and genetic transformation in Chlorobium tepidum (abstract). Seventh international symposium on photosynthetic prokaryotes, Amherst, Massachusetts, USA, p 138 (abstr A)

  • Worrell VE, Nagle DP Jr, McCarthy D, Eisenbraun A (1988) Genetic transformation system in the archaebacterium Methanobacterium thermoautotrophicum Marburg. J Bacteriol 170: 663–656

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaas J. Hellingwerf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmen, R., Buijsman, P. & Hellingwerf, K.J. Physiological regulation of competence induction for natural transformation in Acinetobacter calcoaceticus . Arch. Microbiol. 162, 344–351 (1994). https://doi.org/10.1007/BF00263782

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00263782

Key words

Navigation