Skip to main content
Log in

Formylmethanofuran: tetrahydromethanopterin formyltransferase and N 5,N 10-methylenetetrahydromethanopterin dehydrogenase from the sulfate-reducing Archaeoglobus fulgidus: similarities with the enzymes from methanogenic Archaea

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The sulfate-reducing Archaeoglobus fulgidus contains a number of enzymes previously thought to be unique for methanogenic Archaea. The purification and properties of two of these enzymes, of formylmethanofuran: tetrahydromethanopterin formyltransferase and of N 5,N 10-methylenetetrahydromethanopterin dehydrogenase (coenzyme F420 dependent) are described here. A comparison of the N-terminal amino acid sequences and of other molecular properties with those of the respective enzymes from three methanogenic Archaea revealed a high degree of similarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

H4MPT:

tetrahydromethanopterin

F420 :

coenzyme

F420 :

formyltransferase, formylmethanofuran: tetrahydromethanopterin formyltransferase

methylene-H4MPT dehydrogenase:

N 5,N 10-methylenetetrahydromethanopterin dehydrogenase

methylene-H4MPT recductase:

N 5,N 10-methylenetetrahydromethanopterin reductase

cyclohydrolase:

N 5,N 10-methenyltetrahydromethanopterin cyclohydrolase

APS:

adenosine 5′-phosphosulfate

MOPS:

3-(N-morpholino) propane sulfonic acid

TRICINE:

N-tris(hydroxymethyl)methylglycine

MES:

morpholinoethanesulfonic acid

1 U:

1 μmol/min

References

  • Achenbach-Richter L, Stetter KO, Woese CR (1987) A possible biochemical missing link among archaebacteria. Nature (London) 327: 348–349

    Google Scholar 

  • Bio-Rad Laboratories (1981) Instruction manual for Bio-Rad protein assay. Bio-Rad Laboratories, Richmond, Calif, USA

    Google Scholar 

  • Börner G (1988) Isolierung von vier Coenzymen der Methanogenese aus Methanobacterium thermoautotrophicum. Diploma thesis, Marburg

  • Börner G, Karrasch M, Thauer RK (1991) Molybdopterin adenine dinucleotide and molydopterin hypoxanthine dinucleotide in formylmethanofuran dehydrogenase from Methanobacterium thermoautotrophicum (Marburg). FEBS Lett 290: 31–34

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

    Google Scholar 

  • Breitung J, Thauer RK (1990) Formylmethanofuran: tetrahydromethanopterin formyltransferase from Methanosarcina barkeri: Identification of N 5-formyltetrahydromethanopterin as the product. FEBS Lett 275: 226–230

    Google Scholar 

  • Breitung J, Börner G, Karrasch M, Berkessel A, Thauer RK (1990) N-Furfurylformamide as a pseudo-substrate for formylmethanofuran converting enzymes from methanogenic bacteria. FEBS Lett 268: 257–260

    Google Scholar 

  • Breitung J, Schmitz RA, Stetter KO, Thauer RK (1991) N 5,N 10-Methenyltetrahydrometha cyclohydrolase from the extreme thermophile Methanopyrus kandleri: increase of catalytic efficiency (kcat/Km) and thermostability in the presence of salts. Arch Microbiol 156: 517–524

    Google Scholar 

  • Breitung J, Börner G, Scholz S, Linder D, Stetter KO, Thauer RK (1992) Formylmethanofuran: tetrahydromethanopterin formyltransferase from the extreme thermophile Methanopyrus kandleri: salt dependence, kinetic properties and catalytic mechanism. Eur J Biochem (in press)

  • Dahl C, Koch HG, Keuken O, Trüper HG (1990) Purification and characterization of ATP sulfurylase from the extremely thermophilic archaebacterial sulfate-reducer, Archaeoglobus fulgidus. FEMS Microbiol Lett 67: 27–32

    Google Scholar 

  • Daniels L, Belay N, Rajagopal BS (1986) Assimilatory reduction of sulfate and sulfite by methanogenic bacteria. Appl Environ Microbiol 51: 703–709

    Google Scholar 

  • DiMarco AA, Donnelly MI, Wolfe RS (1986) Purification and properties of the 5,10-methenyltetrahydromethanopterin cyclohydrolase from Methanobacterium thermoautotrophicum. J Bacteriol 168: 1372–1377

    Google Scholar 

  • DiMarco AA, Bobik TA, Wolfe RS (1990a) Unusual coenzymes of methanogenesis. Annu Rev Biochem 59: 355–394

    Google Scholar 

  • DiMarco AA, Sment KA, Konisky J, Wolfe RS (1990b) The formylmethanofuran: tetrahydromethanopterin formyltransferase from Methanobacterium thermoautotrophicum ΔH. Nucleotide sequence and functional expression of the cloned gene. J Biol Chem 265: 472–476

    Google Scholar 

  • Donnelley MI, Escalante-Semerena JC, Rinehart KL Jr, Wolfe RS (1985) Methenyl-tetrahydromethanopterin cyclohydrolase in cell extracts of Methanobacterium. Arch Biochem Biophys 242: 430–439

    Google Scholar 

  • Donnelley MI, Wolfe RS (1986) The role of formylmethanofuran: tetrahydromethanopterin formyltransferase in methanogenesis from carbon dioxide. J Biol Chem 261: 16653–16659

    Google Scholar 

  • Enßle M, Zirngibl C, Linder D, Thauer RK (1991) Coenzyme F420-dependent N 5,N 10-methylenetetrahydromethanopterin dehydrogenase in methanol grown Methanosarcina barkeri. Arch Microbiol 155: 483–490

    Google Scholar 

  • Görg A, Postel W, Günther S (1988) The current state of twodimensional electrophoresis with immobilized pH gradients (a review). Electrophoresis 9: 531–546

    Google Scholar 

  • Gorris LGM, Voet ACWA, van derDrift C (1991) Structural characteristics of methanogenic cofactors in the non-methanogenic archaebacterium Archaeoglobus fulgidus. BioFactors 3: 29–35

    Google Scholar 

  • Hewick RM, Hunkapiller MW, Hood LE, Dreyer WJ (1981) A gas-liquid solid phase peptide and protein sequentor. J Biol Chem 256: 7990–7997

    Google Scholar 

  • Karrasch M, Börner G, Enßle M, Thauer RK (1990) The molybdoenzyme formylmethanofuran dehydrogenase from Methanosarcina barkeri contains a pterin cofactor. Eur J Biochem 194: 367–372.

    Google Scholar 

  • Keltjens JT, Brugman AJAM, Kesseleer JMA, TeBrömmelstroet BWJ, van derDrift C, Vogels GD (1992) 5-Formyl-5,6,7,8-tetrahydromethanopterin is the intermediate in the process of methanogenesis in Methanosarcina barkeri. BioFactors 3: 249–255

    Google Scholar 

  • Klein AR, Breitung J, Linder D, Stetter KO, Thauer RK (1993) N 5,N 10-Methenyltetrahydromethanopterin cyclohydrolase from the extremely thermophilic sulfate reducing Archaeoglobus fulgidus: Comparison of its properties with those of the cyclohydrolase from the extremely thermophilic Methanopyrus kandleri. Arch Microbiol (in press)

  • Lampreia J, Fauque G, Speich N, Dahl C, Moura I, Trüper HG, Moura JJG (1991) Spectroscopic studies on APS reductase isolated from the hyerthermophilic sulfate-reducing archaebacterium Archaeoglobus fulgidus. Biochem Biophys Res Commun 181: 342–347

    Google Scholar 

  • Ma K, Thauer RK (1990a) N 5,N 10-methylenetetrahydromethanopterin reductase from Methanoscarina barkeri. FEMS Microbiol Lett 70: 119–124

    Google Scholar 

  • Ma K, Thauer RK (1990b) Purification and properties of N 5,N 10-methylenetetrahydromethanopterin reductase from Methanobacterium thermoautotrophicum (strain Marburg). Eur J Biochem 191: 187–193

    Google Scholar 

  • Ma K, Linder D, Stetter KO, Thauer RK (1991) Purification and properties of N 5,N 10-methylenetetrahydromethanopterin reductase (coenzyme F420-dependent) from the extreme thermophile Methanopyrus kandleri. Arch Microbiol 155: 593–600

    Google Scholar 

  • Mazumder TK, Nishio N, Fukuzaki S, Nagai S (1986) Effect of sulfur-containing compounds on growth of Methanosarcina barkeri in defined medium. Appl. Environ Microbiol 52: 617–622

    Google Scholar 

  • Möller-Zinkhan D, Börner G, Thauer RK (1989) Function of methanofuran, tetrahydromethanopterin, and coenzyme F420 in Archaeoglobus fulgidus. Arch Microbiol 152: 362–368

    Google Scholar 

  • Moura JJG, Mour I, Santos H, Xavier AV, Scandellari M, LeGall J (1982) Isolation of P590 from Methanoscarina barkeri: evidence for the presence of sulfite reductase activity. Biochem Biophys Res Commun 108: 1002–1009

    Google Scholar 

  • Mukhopadhyay B, Daniels L (1989) Aerobic purification of N 5,N 10-methylenetetrahydromethanopterin dehydrogenase, separated from N 5,N 10-methenyltetrahydromethanopterin cyclohydrolase, from Methanobacterium thermoautotrophicum strain Marburg. Can J Microbiol 35: 499–507

    Google Scholar 

  • Rajagopal BS, Daniels L (1986) Investigation of mercaptans, organic sulfides, and inorganic sulfur compounds as sulfur sources for the growth of methanogenic bacteria. Curr Microbiol 14: 137–144

    Google Scholar 

  • Rönnow PH, Gunnarsson LAH (1981) Sulfide-dependent methane production and growth of a thermophilic methanogenic bacterium. Appl Environ Microbiol 42: 580–584

    Google Scholar 

  • Rönnow PH, Gunnarsson LAH (1982) Response of growth and methane production to limiting amounts of sulfide and ammonia in two thermophilic methanogenic bacteria. FEMS Microbil Lett 14: 311–315

    Google Scholar 

  • Schmitz RA, Linder D, Stetter KO, Thauer RK (1991) N 5,N 10-methylenetetrahydromethanopterin reductase (coenzyme F420-dependent) and formylmethanofuran dehydrogenase from the hyperthermophile Archaeoglobus fulgidus. Arch Microbiol 156: 427–434

    Google Scholar 

  • Schmitz RA, Albracht SPJ, Thauer RK (1992) A molybdenum and a tungsten isoenzyme of formylmethanofuran dehydrogenase in the thermophilic archaeon Methanobacterium wolfei. Eur J Biochem 209: 1013–1018

    Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150: 76–85

    Google Scholar 

  • Speich N, Trüper HG (1988) Adenylylsulphate reductase in a dissimilatory sulphate-reducing archaebacterium. J Gen Microbiol 134: 1419–1425

    Google Scholar 

  • Stetter KO (1988) Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria. Syst Appl Microbiol 10: 172–173

    Google Scholar 

  • Stetter KO, Lauerer G, Thomm M, Neuner A (1987) Isolation of extremely thermophilic sulfate reducers: Evidence for a novel branch of archaebacteria. Science 236: 822–824

    Google Scholar 

  • TeBrömmelstroet BW, Hensgens CMH, Geerts WJ, Keltjens JT, Drift C van der, Vogels GD (1990a) Purification and properties of 5,10-methenyltetrahydromethanopterin cyclohydrolase from Methanosarcina barkeri. J Bacteriol 172: 564–571

    Google Scholar 

  • TeBrömmelstroet BW, Hensgens CMH, Keltjens JT, Drift C van der, Vogels GD (1990b) Purification and properties of 5,10-methylenetetrahydromethanopterin reductase, a coenzyme F420-dependent enzyme, from Methanobacterium thermoautotrophicum strain ΔH. J Biol Chem 265: 1852–1857

    Google Scholar 

  • TeBrömmelstroet BW, Geerts WJ, Keltjens JT, Drift C van der, Vogels GD (1991a) Purification and properties of 5,10-methylenetetrahydromethanopterin dehydrogenase and 5,10-methylenetetrahydromethanopterin reductase, two coenzyme F420-dependent enzymes, from Methanosarcine barkeri. Biochim Biophys Acta 1079: 293–302

    Google Scholar 

  • TeBrömmelstroet BW, Hensgens CMH, Keltjens JT, Drift C van der, Vogels GD (1991b) Purification and characterization of coenzyme F420-dependent 5,10-methylenetetrahyromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum strain ΔH. Biochim Biophys Acta 1073: 77–84

    Google Scholar 

  • Thauer RK (1990) Energy metabolism of methanogenic bacteria. Biochim Biophys Acta 1018: 256–259

    Google Scholar 

  • White RH (1988) Structural diversity among methanofurans from different methanogenic bacteriol 170: 4594–4597

    Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87: 4576–4579

    Google Scholar 

  • Woese CR, Achenbach L, Rouvière P, Mandelco L (1991) Archaeal phylogeny: reexamination of the phylogenetic position of Archaeoglobus fulgidus in light of certain composition-induced artifacts. Syst Appl Microbiol 14: 364–371

    Google Scholar 

  • Zellner G, Stackebrandt E, Kneifel H, Messner P, Sleytr UB, Macario EC de, Zabel HP, Stetter KO, Winter J (1989) Isolation and characterization of a thermophilic, sulfate reducing archaebacterium, Archaeoglobus fulgidus strain Z. Syst Appl Microbiol 11: 151–160

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwörer, B., Breitung, J., Klein, A.R. et al. Formylmethanofuran: tetrahydromethanopterin formyltransferase and N 5,N 10-methylenetetrahydromethanopterin dehydrogenase from the sulfate-reducing Archaeoglobus fulgidus: similarities with the enzymes from methanogenic Archaea. Arch. Microbiol. 159, 225–232 (1993). https://doi.org/10.1007/BF00248476

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00248476

Key words

Navigation