Skip to main content
Log in

Lattice dynamics of pyrite FeS2 — polarizable-ion model

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Lattice dynamical calculations of the pyrite FeS2 were performed using the polarizable-ion model (PIM) with different sets of short-range force constants. Not until the mean deviations between the observed and the calculated phonon energies become smaller than 3 cm-1, the true force field can be established. In the case of only slightly greater deviations, the force fields computed differ strongly being without any physical meaning. The results are discussed with respect to the force constants K i , F i , and H i , the effective dynamic charges and polarizabilities of the atoms involved, and the eigenvectors and potential energy distributions of the phonon modes. The most important short-range force constants are K 1 (Fe-S stretching): 0.5 N cm-1, K 2 (internal stretching of the S2 units): 1.0 N cm-1, F 1 (Fe....Fe stretching): 0.2 N cm-1, which indicate repulsive interactions of Fe atoms due to the occupied t 2g orbitals despite the relatively large Fe⋯Fe distances of 383 pm, and F 2 and F 3 (both intermolecular S2⋯S2 interactions): 0.2 N cm-1. The great TO/LO splittings of some of the IR allowed phonon modes (species F u) are caused by the large polarizabilities (2.4.106 and 3.3.106 pm3) of the atoms involved rather than by their effective charges (Fe: 0.2 e).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brostigen G, Kjekshus A (1969) Redetermined crystal structure of FeS2 (pyrite). Acta Chem Scand 23:2186–2188

    Google Scholar 

  • Bührer W, Lafougére E, Lutz HD (1993) Lattice dynamics of pyrite FeS2 by coherent neutron scattering. J Phys Chem Solids 54:1557–1565

    Google Scholar 

  • Bullett DW (1982) Electronic structure of 3d pyrite and marcasite type sulfides. J Phys C Solid State Phys 15:6163–6174

    Google Scholar 

  • Finklea SL, Cathey L, Amma EL (1976) Investigation of the bonding mechanism in pyrite using the Mößbauer effect and X-ray crystallography. Acta Crystallogr 32A:529–537

    Google Scholar 

  • Folkerts W, Sawatzky GA, Haas C, DeGroot RA, Hillebrecht FU (1987) Electronic structure of some 3d transition-metal pyrites. J Phys C Solid State Phys 20:4135–4144

    Google Scholar 

  • Lauer S, Trautwein AX, Harries FE (1984) Electronic structure calculations, photoelectron spectra, optical spectra, and Mößbauer parameters for pyrites MS2 (M=Fe, Co, Ni, Cu, Zn). Phys Rev B 29:6774–6783

    Google Scholar 

  • Lutz HD, Willich P (1974) Gitterschwingungsspektren. IX. Mitteilung. Pyritstruktur. FIR-Spektren und Normalkoordinatenanalyse von MnS2, FeS2 und NiS2. Z Anorg Allg Chem 405:176–182

    Google Scholar 

  • Lutz HD, Willich P, Haeuseler H (1976) Kraftkonstanten- und Normalkoordinatenrechnungen an Übergangsmetall-Dichalkogeniden und -Diphosphiden mit Pyritstruktur. Z Naturforsch 31a:847–852

    Google Scholar 

  • Lutz HD, Schneider G, Kliche G (1985) Far-infrared reflection spectra, TO and LO phonon frequencies, coupled and decoupled plasmon phonon modes, dielectric constants, and effective dynamical charges of manganese, iron, and platinum group pyrite-type compounds. J Phys Chem Solids 46:437–443

    Google Scholar 

  • Lutz HD, Himmrich J, Haeuseler (1990) Lattice dynamical calculations on spinel-type MCr2S4 (M=Mn, Fe, Cd). Z Naturforsch 45a:893–902

    Google Scholar 

  • Lutz HD, Himmrich J, Müller B, Schneider G (1992) Lattice vibration spectra. LXIX. Lattice dynamics and bonding of pyrite-type chalcogenides and pnictides. J Phys Chem Solids 53:815–825

    Google Scholar 

  • Saßmannshausen M, Zwinscher J, Lutz HD (1996) Band structure calculations and lattice dynamics of spinel-type chalcogenides. Cryst Tech Res 31:89–92

    Google Scholar 

  • Vogt H, Chattopadhyay T, Stolz HJ (1983) Complete first-order Raman spectra of the pyrite structure compounds iron disulfide, manganese disulfide, and silicon diphosphide. J Phys Chem Solids 44:869–873

    Google Scholar 

  • Zwinscher J (1995) Schwingungsspektroskopie und Gitterdynamik — Untersuchungen an Chalkogenid-Spinellen, Spinelltyp Lithiumzink(II)-Chlorid, FeS2 Pyrit und Markasit. Doctoral thesis, University of Siegen

  • Zwinscher J, Lutz HD (1995 I) Lattice dynamics of spinel-type chlorides, oxides, sulfides, and selenides. J Alloy Comp 219:103–106

    Google Scholar 

  • Zwinscher J, Lutz HD (1995 II) Lattice vibration spectra. LXXXIV. Lattice dynamics of spinel-type CoCr2S4, ZnCr2S4, ZnCr2Se4, CdCr2Se4, and HgCr2Se4. J Solid State Chem 118:43–52

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Kurt Dehnicke on the occasion of his 65th birthday

This is contribution LXXXX of a series of papers on lattice vibration spectra

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lutz, H.D., Zwinscher, J. Lattice dynamics of pyrite FeS2 — polarizable-ion model. Phys Chem Minerals 23, 497–502 (1996). https://doi.org/10.1007/BF00241999

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00241999

Keywords

Navigation