Skip to main content
Log in

Characterization of the plasma membrane ATPase of Saccharomyces cerevisiae

  • General Articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

  1. 1.

    The distribution of ATPase and several marker enzymes was examined after differential and sucrose gradient centrifugation of yeast homogenates.

  2. 2.

    An ATPase activity not sensitive to oligomycin is found exclusively associated with a particulate fraction equilibrating at densities of 1.23–1.25. This particulate material shows the chemical and enzymatic characteristics of the yeast plasma membrane.

  3. 3.

    The pH optimum of the plasma membrane ATPase is 5.6, as compared with 8.5 for the mitochondrial ATPase. In addition to oligomycin, the enzyme is not sensitive to other inhibitors of the mitochondria) ATPase as azide, dicyclohexylcarbodiimide and the mitochondrial ATPase inhibitor protein. It is inhibited by p-chloromercuryphenyl sulfonate, fluoride, quercetin and by the antibiotic Dio-9 but is not affected by ouabain.

  4. 4.

    The plasma membrane ATPase shows a high affinity for ATP (Km=0.1 mm) and is very specific for this compound, hydrolyzing other nucleotide triphosphates less than 25% as rapidly. No activity was detected with ADP.

  5. 5.

    The enzyme requires a divalent cation for activity and Mg2+ is the most effective. It is not significantly stimulated by K+ or bicarbonate and Ca2+ is inhibitory.

  6. 6.

    The activity cannot be assayed in intact cells unless they are permeabilized with toluene. This suggest that the active site is on the cytoplasmic side of the plasma membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Meyerhof, O., 1945. J. Biol. Chem. 157, 105–119.

    Google Scholar 

  2. Conway, E. J. and Brady, T. G., 1950. Biochem. J. 47, 360–369.

    Google Scholar 

  3. Riemersma, J. C. and Alsbach, E. J. J., 1974. Biochim. Biophys. Acta. 339, 274–284.

    Google Scholar 

  4. Peña A., 1975. Arch. Biochem. Biophys. 167, 397–409.

    Google Scholar 

  5. Cockburn, M., Earnshaw, P. and Eddy, A. A., 1975. Biochem. J. 146, 705–712.

    Google Scholar 

  6. Serrano, R., 1977. Eur. J. Biochem. 80, 97–102.

    Google Scholar 

  7. Harold, F. M., 1972. Bacteriol. Rev. 36, 172–230.

    Google Scholar 

  8. Lagunas, R., 1976. Biochim. Biophys. Acta. 440, 661–674.

    Google Scholar 

  9. Matile, Ph., Moor, H. and Mühlethaler, K. 1967. Arch. Mikrobiol. 58, 201–211.

    Google Scholar 

  10. Matile, Ph., 1970. in “Membranes. Structure and Function” FEBS Symposium. Vol 20 (Villanueva, J. R. and Ponz, F., eds.) pp. 39–49, Academic Press. London and New York.

    Google Scholar 

  11. Nurminen, T., Oura, E. & Suomalainen, H., 1970. Biochem. J. 116, 61–69.

    Google Scholar 

  12. Schibeci, A., Rattray, J. B. M. and Kidby, D. K., 1973. Biochim. Biophys. Acta. 311, 15–25.

    Google Scholar 

  13. Fuhrman, G. F., Wehrli, E. and Boehm, C. (1974) Biochim. Biophys. Acta. 363, 295–310.

    Google Scholar 

  14. Nurminen, T., Taskinen, L. and Suomalainen, H. 1976 Biochem. J. 154, 751–763.

    Google Scholar 

  15. Stone, A. B. 1974 Biochem. J. 137, 117–118.

    Google Scholar 

  16. Wharton, D. C. and Tzagoloff, A. 1967 Meth. Enzymol. 10, 245–250.

    Google Scholar 

  17. Van der Wilden, W., Matile, Ph., Schellenberg, M., Meyer, J. & Wiemken, A. 1973 Z. Naturforsch. 28c, 416–421.

    Google Scholar 

  18. Schatz, G. and Klima, J. 1964 Biochim. Biophys. Acta. 81, 448–461.

    Google Scholar 

  19. Cabib, E. 1972 Meth. Enzymol. 28B, 572–580.

    Google Scholar 

  20. Serrano, R., Deas, J. E. and Warren, L. G. 1977 Exper. parasitol. 41, 370–384.

    Google Scholar 

  21. Serrano, R., Gancedo, J. M. and Gancedo, C. 1973 Eur. J. Biochem. 34, 479–482.

    Google Scholar 

  22. Guillory, R. J. 1964 Biochim. Biophys. Acta. 89, 197–207.

    Google Scholar 

  23. Nelson, N., Nelson, H. and Racker, E. 1972 J. Biol Chem. 247, 7657–7662.

    Google Scholar 

  24. Korn, E. D., 1969. Ann. Rev. Biochem. 38, 263–288.

    Google Scholar 

  25. Racket, E. 1976 “A new book at Mechanisms in Bioenergetics” pp. 68–87, Academic Press. New York.

    Google Scholar 

  26. Christensen, M. S. and Cirillo, V. P. 1972 J. Bacteriol. 110, 1190–1205.

    Google Scholar 

  27. Lloyd, D. and Edwards, S. W. 1976 Biochem. J. 160, 335–342.

    Google Scholar 

  28. Durán, A., Bowers, B. and Cabib, E. 1975 Proc. Nat. Acad. Sci USA 72, 3952–3955.

    Google Scholar 

  29. Delhez, J., Dufour, J. Thines, D. and Goffeau, A. 1977 Eur. J. Biochem. 79, 319–328.

    Google Scholar 

  30. Scarborough, G. A. 1977 Arch. Biochem. Biophys. 180, 384–393.

    Google Scholar 

  31. Bowman, B. J. and Slayman, C. W. 1977 J. Biol. Chem. 252, 3357–3363.

    Google Scholar 

  32. Scarborough, G. A. 1976 Proc. Nat. Acad. Sci. USA 73, 1485–1488.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serrano, R. Characterization of the plasma membrane ATPase of Saccharomyces cerevisiae. Mol Cell Biochem 22, 51–63 (1978). https://doi.org/10.1007/BF00241470

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00241470

Keywords

Navigation